Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

September 3, 2012--------News Archive Return to: News Alerts


Women who are carriers for a fragile X "premutation"
have a high risk for primary ovarian insufficiency.

The mouse model appears to reproduce the effects of the premutation on the ovaries.

WHO Child Growth Charts

       

Mouse Model for Primary Ovarian Insufficiency (POI)

Scientists have established a genetic mouse model for primary ovarian insufficiency (POI), a human condition in which women experience irregular menstrual cycles and reduced fertility, and early exposure to estrogen deficiency

In most cases of primary ovarian insufficiency, the cause is mysterious, although genetics is known to play a causative role. There are no treatments designed to help preserve fertility. Some women with POI retain some ovarian function and a fraction (5-10 percent) have children after receiving the diagnosis.

Having a mouse model could accelerate research on the causes and mechanisms of POI, and could eventually lead to treatments, says Peng Jin, PhD, associate professor of human genetics at Emory University School of Medicine.


POI affects approximately one in a hundred women.


The results were published online recently in the journal Human Molecular Genetics.

The paper was the result of a collaboration between researchers at Emory and the Institute of Zoology, Chinese Academy of Sciences in Beijing. Dahua Chen, PhD, associate director of the State Key Laboratory of Reproductive Biology, is the senior author and postdoctoral fellow Cuiling Lu is the first author. Stephanie Sherman, PhD, professor of human genetics at Emory, is a co-author.


The mouse model builds on research on women who
are carriers of a “premutation” for fragile X syndrome,
a leading cause of inherited intellectual disability.


The mice have a fragment of a human X chromosome from a fragile X premutation carrier. Other non-genetic mouse models used to study menopause include surgical removal of the ovaries, or exposure of mice to a chemical, 4-vinylcyclohexene diepoxide, which depletes the ovaries.

“While the fragile X premutation is a leading cause of POI, I think this model will be useful and relevant for all women with this condition,” Jin says.

Women with the fragile X premutation account for around two percent of spontaneous POI cases and 14 percent of familial POI cases. About 20 percent of women who carry the fragile X premutation experience POI, the disorder now called fragile X-associated POI, or FXPOI.


Fragile X syndrome is caused by the expansion of a
“triplet repeat” in a gene (FMR1) that is important for
signaling in the brain. In fragile X syndrome, the triplet repeat -- three DNA letters (CGG) repeated many times --
forces the gene to shut off.

For a woman who carries the premutation,
the triplet repeat is not large enough to shut the gene off.
There is a risk that it will expand in her children
enough to generate fragile X syndrome.
In addition, the triplet repeat appears to have
an effect on the woman’s ovaries,
independently from its influence on the FMR1 gene.


Jin says studying mice that have an analogous genetic alteration will help scientists understand what’s happening to the ovaries in POI. It appears that the RNA coming from the premutation impairs development of the ovarian follicles, the structures in which eggs/oocytes mature.

The research team found that a quarter of premutation-carrying female mice are infertile. When they are housed with male mice, those that do have pups have them a month later on average (12.5 weeks of age compared to 8.5 weeks), and they have fewer pups.

Puberty occurs at roughly five weeks of age in mice, and the premutation mice have alterations in their ovaries already before puberty. At 25 days of age, there are a reduced number of mature follicles in ovaries of the female mice carrying the premutation. Those mice also have altered levels of hormones resembling those of women with POI, such as elevated FSH (follicle stimulating hormone).

The research team found that in the ovaries of mice with the fragile X premutation, ovulation-related genes are less active. In addition, two cellular signaling pathways (Akt/mTOR) are less active in the ovaries, suggesting that drugs that affect those pathways could be used to treat POI.

The research in Jin’s laboratory was supported by the National Institute of Neurological Disorders and Stroke (NS051630 and NS067461). Chen’s laboratory is supported by the Chinese Academy of Sciences, the National Basic Research Program of China and the National Science Foundation of China.

Reference: C. Lu et al. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum. Mol. Genet. (2012) doi:10.1093/hmg/dds347

Original article: http://news.emory.edu/stories/2012/08/early_menopause_in_mice_fxpoi/index.html