Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

September 4, 2012--------News Archive Return to: News Alerts


Three-dimensional tomographic reconstruction of a kinetochore complex,
in pink, bound to a microtubule, shown in yellow. Video: Tamir Gonen


WHO Child Growth Charts

       

Kinetochore Structure Reveals How It Takes Hold

The kinetochore is the bulky molecular machine that connects a chromosome to the long, thin microtubules which tugg the chromosome to one end of a dividing cell

With the first-ever three-dimensional image of an isolated kinetochore – scientists can now see how the machine establishes and maintains its grip, even as the microtubule tip it holds onto shrinks away.

Maintaining that grip is essential to ensure that new cells receive the appropriate allotment of chromosomes.

Tamir Gonen, a group leader at the Howard Hughes Medical Institute’s Janelia Farm Research Campus, led the effort to determine the kinetochore structure, in collaboration with Sue Biggins’ lab at the Fred Hutchinson Cancer Research Center in Seattle. His team’s report of the new structure was published online on August 12, 2012, in the journal Nature Structural and Molecular Biology.


When cells divide, it is crucial that the resulting
daughter cells receive the same genetic information
contained in the parent – no more, no less.

To enable this, cells prepare to divide by first
making copies of their chromosomes.

As the cell elongates, pairs of identical chromosomes
separate and each partner is drawn toward an opposite
end of the cell by a long microtubule.

To form an attachment site for the microtubule,
hundreds of proteins come together on the
chromosome to assemble the kinetochore complex.


The kinetochore must maintain its grip on the microtubule even as it is being pulled toward the end of the elongating cell. That’s particularly impressive, Biggins says, because microtubules are dynamic, constantly growing and retracting at their ends. During cell division, microtubules diminish in length, bringing their tips nearer the cell’s edge. For a kinetochore, Biggins says, “it’s as if you’re climbing a rope and someone is constantly pulling the rope out from under you. The kinetochore somehow hangs on to this dynamic polymer, even as the polymer is disassembling right under it.”

Scientists had proposed a few strategies that might enable the kinetochore to stay connected to the vanishing tip of a microtubule. One model suggested that it might form a ring that floats freely along the length of the microtubule. Alternatively, some research had suggested, it might establish attachments to multiple binding sites along the microtubule, so that some of the attachments could come and go as the microtubule changed shape. But without being able to actually see the kinetochore, Biggins says, it was difficult to determine which model was right.

Even in yeast, in which the kinetochore is relatively simple, many copies of each of 38 different proteins must come together to form a functional kinetochore.


At 100 nanometers across, a kinetochore is four times the
size of another complex cellular structure, the ribosome.

Further, it is inherently dynamic.
While subcomplexes have been reconstituted,
no one has assembled an entire functional kinetochore.

“This thing is enormous,”

Gonen


With persistence, Bungo Akiyoshi, a student in Biggins’ lab, devised a method to purify the unwieldy structure. Gonen’s brother Shane, a technician in the Biggins lab, could then use electron microscopy to try to image the kinetochores as they grabbed on to microtubules.

Still, the unstable complexes often began to degrade before the images were captured, resulting in pictures that of kinetochores in various states of disrepair. It was impossible to tell just by looking which of the shapes on the grid represented intact kinetochores.

“From a structural biology perspective, it was a mess. We had particles that were varying in size from very small to very large, with variable shapes,” Tamir says. “And when we started we had no idea what we were looking for. There were a lot of things there, and we really couldn’t figure out what was what.”

“It was only after the Biggins lab started generating mutants that were missing various components of the kinetochore that things started making sense,” says Tamir, who was an HHMI Early Career Scientist at the University of Washington at the time. “Then we could figure out what particles were indeed kinetochores and assign the position of some components.”

Over two years, Shane collected terabytes of data and the researchers began putting the pieces of the puzzle together. With statistical analyses, they determined which features were reproducible and indicative of the structure of the fully assembled complex, and by the time Tamir moved his lab across the country to Janelia Farm in 2011, they had a pretty good idea of what the kinetochore looked like.

Still, they were missing critical data that would reveal what it looked like in three dimensions. Gonen proposed that his Janelia Farm lab use electron tomography to generate a three-dimensional image of the kinetochore.

When Dan Shi, the Gonen lab’s electron microscopy specialist, arrived at Janelia Farm, he set out to collect the necessary data. Using the same grids that Shane had prepared to collect the original images, Shi focused on a few particles that appeared to be intact kinetochore complexes, then collected a series of images of each one from different angles. Matt Iadanza, a graduate student in the Gonen lab then merged the data to produce the three-dimensional structures.

“Essentially what you have are all these side views of the particle, and you combine those to get a three-dimensional structure,” Gonen explains. When they did that, he says, “things started making even a little bit more sense. Instead of a flattened view of the top of the particle, we now had a density that we could rotate around and have a look.”

Gonen and Biggins say it was shocking how much their team’s structures reflected models that researchers had imagined several years earlier, based on biochemical data. “It was amazing to see it look like what people had pictured in their head,” Biggins says. “When you look at it, you can really imagine its behavior.”


Their images showed that the kinetochore
is shaped something like the palm of a hand.

A large domain in the center might grab
onto the chromosome, the researchers say,
while the spokes that radiate out from that center
form attachments to the microtubule.

Some, but not all, of the kinetochores
in their images formed a ring structure


Biggins says the structures they have observed suggest that both of the previously proposed models for microtubule binding are likely true: kinetochores can form the ring structure that biochemists had proposed might facilitate their attachment to microtubules, but that the ring is not necessary.

“These are very early days for this structure,” Gonen says, noting that the large size and dynamic nature of the kinetochore will be a challenge as structural biologists work toward a higher-resolution picture of the complex. “But with this unprecedented look, people can now begin to explain some of the biochemical data about how kinetochores control chromosome segregation.”

Original article: http://www.hhmi.org/news/gonen20120820.html