Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

September 6, 2012--------News Archive Return to: News Alerts


At least one function for the enzyme Aldh1a1 is the production of a powerful hormone,
which then drives up the formation of visceral fat cells.
The source of this hormone is vitamin A.

WHO Child Growth Charts

       

A High-Fat Diet and Loss of Estrogen Leads Women To Store More Abdominal Fat Than Men

A high-fat diet triggers chemical reactions in female mice that could explain why women are more likely than men to gain fat in the abdomen and why women gain fat following menopause

by Emily Caldwell

Scientists identified events in female mice that start with the activation of an enzyme and end with the formation of visceral fat – fat that accumulates around internal organs and is linked to a higher risk for Type 2 diabetes, heart disease and cancer.

At least one function for this enzyme is the production of a powerful hormone, which then drives up the formation of visceral fat cells. The source of this hormone is vitamin A.

This enzyme appears to be activated at higher levels in females than in males when both sexes eat a high-fat diet. When researchers genetically altered mice by deleting the enzyme, female mice stayed lean, especially in the abdominal area, even when they continued to eat a lot of fat. Males without the enzyme also developed less fat, but the effect was far less significant than in females.

The results suggest the enzyme could be a target for sex-specific anti-obesity therapy.

“If you asked most people what they believe causes obesity, they would probably say high food consumption and a sedentary lifestyle. But we see that there are genetic factors telling the body what to do with fat,” said Ouliana Ziouzenkova, assistant professor of human nutrition at Ohio State University and senior author of the study.


“A high-fat diet acts on our genetics
to make us more fat or less fat.
The diet is not powerful enough
to do this on its own.”

Ouliana Ziouzenkova
assistant professor, Ohio State University


Further experiments showed that fat cells in female mice lacking the enzyme Aldh1a1 could produce proteins that use fat for heat, meaning the fat in females was burned away.

Researchers also studied fat tissue from human surgery patients and found the same enzyme was present in human tissue, and its levels were markedly higher in cells extracted from the visceral fat tissue of obese women compared to cells from lean women.

Finally, the study suggested that estrogen suppresses the Aldh1a1 enzyme’s activity, which might help explain why postmenopausal women with decreased estrogen in their bodies tend to accumulate fat in their bellies.

The research is published online in the journal Diabetes.


The hormonal effect seen in these mice
relates at least in part to how the female body
processes vitamin A, a nutrient that is
converted into a variety of compounds.


These include a molecule that supports the burning of fat for energy, as well as retinoic acid, the hormone in this study that leads to the formation of visceral fat. The scientists showed that a high-fat diet functions as a switching mechanism that breaks down the fat-burning molecule and leads to activation of the enzyme and production of retinoic acid, ending in the development of visceral fat.

A year ago, Ziouzenkova’s lab identified the one of these enzymes that relates to fat accumulation: Aldehyde Dehydrogenase 1, or Aldh1a1. In the current study, she and colleagues conducted numerous experiments in mice to track the events that followed activation of this enzyme.


The researchers compared normal mice
with genetically altered mice lacking the enzyme
over almost a year of eating a high-fat diet.

Male and female normal mice gained weight
on the high-fat diet, as expected,
though the females developed more visceral fat
that surrounds the organs than did males,
a trend also seen in humans
as the result of eating excess fat.

(In contrast, on a regular diet, men are more likely
than women to form abdominal fat.)


Both sexes of mice developed peripheral subcutaneous fat, which lies just under the skin and has some benefits. In mice without the enzyme, however, the males developed some fat but females remained lean, and this occurred even when females ate more food than males.

Without Aldh1a1, the females were not producing retinoic acid, and that protected them from producing visceral fat. Meanwhile, males retained the ability to produce retinoic acid.

The scientists then analyzed the proteins contained in fat tissue in male and female mice lacking the enzyme, and saw that only the females’ fat cells contained high levels of a protein that releases fat from fat cells to support fat burning. This release led to production of another protein that converts fat to heat, essentially burning the fat, in the form of lipids, away.


“Without production of the hormone retinoic acid,
female
[mice] were burning fat and expending energy
in the form of heat. That’s why they stayed very lean.
And this process was specifically affecting visceral fat.”

Ouliana Ziouzenkova


The researchers surgically removed the ovaries of mice to test whether estrogen could be related to visceral fat production in females. As soon as the animals became menopausal and weren’t producing estrogen, they began to produce retinoic acid, which led to visceral fat formation.

“Estrogen was sufficient to protect female mice from both hormonal and, partially, diet-induced obesity. This means estrogen is suppressing activation of the obesity-inducing hormone, and as soon as we lose this estrogen during menopause, the visceral fat starts to grow,” said Ziouzenkova, also an investigator in Ohio State’s Comprehensive Cancer Center.

Using another mouse model that allowed researchers to measure hormone production specifically, researchers observed that female mice on a regular diet barely produced retinoic acid. However, females on a high-fat diet produced high levels of the hormone and, in turn, showed a nine-fold increase in visceral fat compared to visceral fat developed by males on a high-fat diet.


This was the final determinant that a high-fat diet triggers
the cascade of events ending in visceral fat formation.


Because the human fat tissue samples researchers
analyzed also showed elevated levels of Aldh1a1
in cells extracted from tissue in obese women,

“It could be that what we show about this hormone’s importance to visceral obesity in mice
is also true for humans.”

Ziouzenkova


Ziouzenkova: “As soon as a female starts the high-fat diet consumption, a mechanism for hormonal regulation is turned on and she starts to produce retinoic acid and her metabolism becomes super thrifty. Females will store more fat than they burn. By removing the Aldh1a1 enzyme in visceral fat, we could make females release fat and burn it. We make them super-metabolically active instead.”

The study identifies the Aldh1a1 enzyme as a potential sex-specific therapy for obesity, but only in very targeted ways.

Deleting the enzyme genetically would be damaging because Aldh1a1 is present in all cells, meaning it has additional functions. Ziouzenkova is investigating ways to target delivery of enzyme-free cells directly to fat as a potential obesity remedy.

This work is supported by a Pilot Industry Partnership grant to Ohio State’s Center for Clinical and Translational Science (supported by theNational Center for Research Resources), the National Institutes of Health, a College of Education and Human Ecology Seed Grant, a Food Innovation Center Seed Grant, an Ohio State International Office Seed Grant, an Alpha Omega Alpha Honor Medical Society 2011 Carolyn L. Kuckein Student Research Fellowship, an OSU Comprehensive Cancer Center Support Grant, a National Research Service Award grant and an EHE Dissertation fellowship.

Graduate student Rumana Yasmeen, medical student Barbara Reichert and postdoctoral researcher Jeffrey Deiuliis led much of this work. Additional co-authors include Fangping Yang, Alisha Lynch, Joseph Meyers and Katharina Volz of the Department of Human Nutrition; and Sanjay Rajagopalan of the Davis Heart and Lung Research Institute; Sangsu Shin and Kichoon Lee of the Department of Animal Sciences; Kari Green of the Mass Spectrometry and Proteomics Facility; Hansjuerg Alder of the Comprehensive Cancer Center Nucleic Acid Shared Resource, all at Ohio State; Molly Sharlach of the University of California, Berkeley; Gregg Duester of the Sanford-Burnham Medical Research Institute in La Jolla, Calif.; and Rudolf Zechner of Karl Franzens University in Graz, Austria.

Original article: http://researchnews.osu.edu/archive/visceralfat.htm