Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

September 11, 2012--------News Archive Return to: News Alerts


Heart failure in children, as in adults, has been on the rise in the past decade and
the prognosis for patients hospitalized with heart failure remains poor.


WHO Child Growth Charts

       

Neonatal Heart Stem Cells May Help Mend Kids' Broken Hearts

Cardiac stem cells from newborns show stronger regenerative ability than adult stem cells

Researchers at the University of Maryland School of Medicine, who are exploring novel ways to treat serious heart problems in children, have conducted the first direct comparison of the regenerative abilities of neonatal and adult-derived human cardiac stem cells.


Among their findings: cardiac stem cells (CSCs) from
newborns have a three-fold ability to restore heart function
to nearly normal levels compared with adult CSCs.

Further, in animal models of heart attack,
hearts treated with neonatal stem cells pumped
stronger than those given adult cells.


The study is published in the September 11, 2012, issue of Circulation.

"The surprising finding is that the cells from neonates are extremely regenerative and perform better than adult stem cells," says the study's senor author, Sunjay Kaushal, M.D., Ph.D., associate professor of surgery at the University of Maryland School of Medicine and director, pediatric cardiac surgery at the University of Maryland Medical Center.

Kaushal: "We are extremely excited and hopeful that this new cell-based therapy can play an important role in the treatment of children with congenital heart disease, many of whom don't have other options."

Dr. Kaushal envisions cellular therapy as either a stand-alone therapy for children with heart failure or an adjunct to medical and surgical treatments. While surgery can provide structural relief for some patients with congenital heart disease and medicine can boost heart function up to two percent, he says cellular therapy may improve heart function even more dramatically.

Kaushal: "We're looking at this type of therapy to improve heart function in children by 10, 12, or 15 percent. This will be a quantum leap in heart function improvement."

Heart failure in children, as in adults, has been on the rise in the past decade and the prognosis for patients hospitalized with heart failure remains poor. In contrast to adults, Dr. Kaushal says heart failure in children is typically the result of a constellation of problems: reduced cardiac blood flow; weakening and enlargement of the heart; and various congenital malformations.


Recent research has shown that several types
of cardiac stem cells can help the heart repair itself,
essentially reversing the theory that a
broken heart cannot be mended.


Stem cells are unspecialized cells that can become tissue- or organ-specific cells with a particular function. In a process called differentiation, cardiac stem cells may develop into rhythmically contracting muscle cells, smooth muscle cells or endothelial cells. Stem cells in the heart may also secrete growth factors conducive to forming heart muscle and keeping the muscle from dying.

To conduct the study, researchers obtained a small amount of heart tissue during normal cardiac surgery from 43 neonates and 13 adults. The cells were expanded in a growth medium to yield millions of cells. The researchers, therefore, had developed a consistent way to isolate and grow neonatal stem cells from as little as 20 milligrams of heart tissue.

Adult and neonate stem cell activity was observed both in the laboratory and in animal models. In addition, animal models were compared to controls which were not given stem cells.


According to the American Heart Association,
congenital heart disease may affect approximately
one in 100 children. In the United States, more than
1 million adults are living with congenital heart defects.


Dr. Kaushal is not clear why the neonatal stem cells performed so well. One explanation lies in sheer volume: there are many more stem cells in a baby's heart than in the adult heart. Another possibility: neonate-derived cells release more growth factors triggering blood vessel development and/or preservation than adult cells.

"This research provides an important link in our quest to understand how stem cells function and how they can best be applied to cure disease and correct medical deficiencies," says E. Albert Reece, M.D., Ph.D., M.B.A., vice president for medical affairs, University of Maryland; the John Z. and Akiko K. Bowers Distinguished Professor; and dean, University of Maryland School of Medicine.

Reece: "Sometimes simple science is the best science. In this case, a basic, comparative study has revealed in stark terms the powerful regenerative qualities of neonatal cardiac stem cells, heretofore unknown."

Insights gained through this research may provide new treatment options for a life-threatening congenital heart syndrome called hypoplastic left heart syndrome (HLHS). Dr. Kaushal and his team will soon begin the first clinical trial in the United States to determine whether the damage to hearts of babies with HLHS can be reversed with stem cell therapy. HLHS limits the heart's ability to pump blood from the left side of the heart to the body.

Current treatment options for HLHS include either a heart transplant or a series of reconstructive surgical procedures. Nevertheless, only 50-60 percent of children who have had these procedures survive to age five.

About the University of Maryland School of Medicine & University of Maryland Medical Center

Founded in 1807, the University of Maryland School of Medicine in Baltimore is the oldest public medical school in the United States, and the first to institute a residency training program. The School of Medicine was the founding school of the University of Maryland and today is an integral part of the 11-campus University System of Maryland. The partnership between the University of Maryland Medical Center (UMMC) and the University of Maryland School of Medicine allows cutting edge medical research and discovery to rapidly innovate and improve patient care and prepare the next generation of health care professionals through excellent training and education.

The University of Maryland Medical Center (UMMC) is a 779-bed teaching hospital in Baltimore and the flagship institution of the 11-hospital University of Maryland Medical System. Patients are referred nationally and regionally for advanced medical, surgical and critical care. All physicians on staff at the Medical Center are faculty physicians of the University of Maryland School of Medicine.

Simpson DL, Mishra R, Sharma S, Goh SK, Deshmukh S, Kaushal S. "A strong regenerative ability of cardiac stem cells derived from neonatal hearts." Circulation. September 11, 2012.

Original article: http://www.umm.edu/news/releases/cardiac-stem-cells.htm