Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

September 18, 2012--------News Archive Return to: News Alerts


The PRC2-AEBP2 complex consists of four different lobes (A, B, C, D)
interconnected by two narrow arms (Arm1, Arm2). Two activity-controlling
elements of PRC2 are shown in blue and located at opposite ends.

WHO Child Growth Charts

       

Scientists Create First 3-D Model of a Protein Critical to Embryo Development

With this model, scientists can see how AEBP2 helps stabilize PRC2 while helping to understanding how PRC2 is involved in regulating the modification of histones

The first detailed and complete picture of a protein complex that is tied to human birth defects as well as the progression of many forms of cancer has been obtained by an international team of researchers led by scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab).

Knowing the architecture of the PRC2 protein, for Polycomb Repressive Complex 2, should be a boon to its future use in the development of new and improved therapeutic drugs.

“We present a complete molecular organization of human PRC2 that offers an invaluable structural context for understanding all of the previous biochemical and functional data that has been collected on this complex,” says Berkeley Lab biophysicist Eva Nogales, an electron microscopy expert who led this research. “Our model should also be an invaluable tool for the design of new experiments aimed at asking detailed questions about the mechanisms that enable PRC2 to function and how those mechanisms might be exploited.”

Nogales, who holds joint appointments with Berkeley Lab, the University of California (UC) at Berkeley, and the Howard Hughes Medical Institute (HHMI), is one of two corresponding authors of a paper describing this research in the journal eLife. The paper is titled “Molecular Architecture of Human Polycomb Repressive Complex 2.”

The other corresponding author is Claudio Ciferri, previously a postdoctoral fellow in the Nogales Lab, now with Novartis Vaccines and Diagnostic. Additional authors are Gabriel Lander, Alessio Maiolica, Franz Herzog and Ruedi Aebersold.


The link between PRC2 and embryonic development
is well-established not just for humans but across
the board for eukaryotic organisms.

For example, studies with mice have shown that
the deletion of any of PRC2’s components results
either in the death of an embryo or severe defects
during the critical stages of early development.

It is also well-established that PRC2 helps control
the differentiation (specialization) of embryonic
stem cells by acting to silence certain genetic
messages within the nucleus of a cell.


“PRC2 controls stem cell differentiation by regulating the expression of specific genes through the binding and methylation of histones, the proteins in chromatin that help bundle DNA into nucleosomes,” Nogales explains. “This is why PRC2 has been one of the top targets in drug development efforts by pharmaceutical companies.”

Despite the numerous biochemical and molecular studies that have been done on PRC2, little has been known about the protein’s overall architecture and the manner in which its different components interact to coordinate histone-binding and methylation.

Nogales, Ciferri and their colleagues have closed this knowledge gap with their model, which they painstakingly constructed from data gathered via multiple sources including three-dimensional electron microscopy, mass spectrometry, protein biochemistry, crystal structure docking, and chemical cross-linking.

The 3D model they constructed features a structural reconstruction at 21 Angstroms and shows PRC2 with all its subunits and functional domains forming a complex with the protein called “AEBP2,” which serves as a stabilizing co-factor for PRC2. The PRC2-AEBP2 complex was shown to consist of four large lobes interconnected by two narrow arms. Clearly identified within this structure are regions where PRC2 and AEBP2 interact.

“This is a robust model that shows the overall architecture and domain organization of the PRC2-AEBP2 complex with unprecedented detail,” says Nogales. “From this model we can see how AEBP2 helps stabilize PRC2 and also how it plays a major role in coordinating the activity of different PRC2 subunits. Our model also provides us with a framework for understanding how various elements of the PRC2 complex involved in regulated histone modification can act either independently or synergistically in response to different chromatin environments.”

Not only does this new model put previous biochemical data on PRC2 in perspective, it also points the way to new testable hypotheses on how PRC2 interacts with chromatin that should inspire future research of PRC2 function and regulation.

For example, from this model, Nogales, Ciferri and their co-authors have localized the molecular structures of individual domains involved in histone binding and methylation. The data suggests a mechanism as to how PRC2 might work in the chromatin environment.

Nogales: “PRC2 is recruited at specific sites along the DNA that need to be silenced, aided by regulators such as AEBP2. Our domain localizations provide important information on how PRC2 can bind nucleosomes during the gene-silencing process. Such information can be used to guide specific deletion or cross-linking mutants for future drug design efforts.”

This research was supported by the National Institute of General Medical Sciences, the Howard Hughes Medical Institute and by funding from the European Union Seventh Framework Program PROSPECTS.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Additional Information
For more about the research of Eva Nogales and a copy of the paper “Molecular Architecture of Human Polycomb Repressive Complex 2” go here

The journal eLife is a new, open access publication supported by the Howard Hughes Medical Institute, the Welcome Trust, and the Max Planck Society for communicating influential discoveries in the life and biomedical sciences. To learn more about eLife go here

Original article: http://newscenter.lbl.gov/feature-stories/2012/09/14/berkeley-lab-scientists-create-first-3-d-model-of-a-protein-critical-to-embryo-development/