Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

September 20, 2012--------News Archive Return to: News Alerts


"Our research has identified how the chemical 5-hmC may be involved
in the epigenetic processes allowing this plasticity."

Dr. Petronis, head of the Krembil Family Epigenetics Laboratory,
Campbell Family Mental Health Research Institute.

WHO Child Growth Charts

       

Role of Novel Epigenetic Brain Chemical

Researchers have identified a new role of a chemical involved in controlling the genes underlying memory and learning

"The brain is a plastic tissue, and we know that learning and memory require various genes to be expressed," says Senior Scientist Dr. Art Petronis of the Centre for Addiction and Mental Health (CAMH), who is also senior author on the new study. "Our research has identified how the chemical 5-hmC may be involved in the epigenetic processes allowing this plasticity." Dr. Petronis is head of the Krembil Family Epigenetics Laboratory in CAMH's Campbell Family Mental Health Research Institute.

5-hmC is an epigenetic modification of DNA, and was discovered in humans and mice in 2009. DNA modifications are chemical changes to DNA. They flag genes to be turned "on" - signalling the genome to make a protein - or turned "off."


As the overwhelming majority of cells in an
individual contain the same genetic code,
a pattern of flags is what allows a neuron
to use the same genome as a blood or liver cell,
but create a completely different and
specialized cellular environment.


The research, published online in Nature Structural & Molecular Biology, sheds light on the role of 5-hmC. Intriguingly, it is more abundant in the brain than in other tissues in the body, for reasons not clear to date.

The CAMH team of scientists examined DNA from a variety of tissues, including the mouse and human brain, and looked at where 5-hmC was found in the genome.


The scientists detected that 5-hmC had a
unique distribution in the brain:
it was highly enriched in genes related
to the synapse, the dynamic tips of brain cells.

Growth and change in the synapse allow
different brain cells to "wire" together,
which allows learning and memory.


"This enrichment of 5-hmC in synapse-related genes suggests a role for this epigenetic modification in learning and memory," says Dr. Petronis.

The team further showed that 5-hmC had a special distribution even within the gene. The code for one gene can be edited and "spliced" to create several different proteins. Dr. Petronis found that 5-hmC is located at "splice junctions," the points where the gene is cut before splicing.


"5-hmC may signal the cell's splicing machinery
to generate the diverse proteins that, in turn,
give rise to the unprecedented
complexity of the brain."


Dr. Art Petronis
Centre for Addiction and Mental Health


The research team is continuing to investigate the role of 5-hmC in more detail, and to determine whether 5-hmC function is different in people with bipolar disorder and schizophrenia compared to people without these diagnoses.

This research was funded by the U.S National Institutes of Health, the Canadian Institutes of Health Research, and the Tapscott Chair in Schizophrenia Studies at the University of Toronto.

The Centre for Addiction and Mental Health (CAMH) is Canada's largest mental health and addiction teaching hospital, as well as one of the world's leading research centres in the area of addiction and mental health. CAMH combines clinical care, research, education, policy development and health promotion to help transform the lives of people affected by mental health and addiction issues.

CAMH is fully affiliated with the University of Toronto, and is a Pan American Health Organization/World Health Organization Collaborating Centre.
For further information:
Media contact: Anita Dubey, Manager of Research Communications, CAMH; 416-535-8501 x 4932

Original article: http://www.camh.ca/en/hospital/about_camh/newsroom/news_releases
_media_advisories_and_backgrounders/current_year/Pages/CAMH-illuminates-roles-of-novel-epigenetic-chemical-in-the-brain.aspx