Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

September 17, 2012--------News Archive Return to: News Alerts


Disruption of MOLECULES in small neurons called granule cells – located in the
dentate gyrus region of the brain – caused brain seizures in mice
similar to those seen in human temporal lobe epilepsy.


(Illustrated: Human hippocampus ABOVE,
Rat hippocampus BELOW)

WHO Child Growth Charts

       

Scientists Show Biological Mechanism Can Trigger Epileptic Seizures

Scientists have discovered the first direct evidence that a biological mechanism long suspected in epilepsy is capable of triggering the brain seizures – opening the door for studies to seek improved treatments or even preventative therapies

Researchers at Cincinnati Children's Hospital Medical Center report Sept. 19 in Neuron that molecular disruptions in small neurons called granule cells – located in the dentate gyrus region of the brain – caused brain seizures in mice similar to those seen in human temporal lobe epilepsy.

The dentate gyrus is in the hippocampus of the temporal lobe, and temporal lobe epilepsy is one of the most common forms of the disorder.

"Epilepsy is one of those rare disorders where we have no real preventative therapies, and current treatments after diagnosis can have significant side effects," said Steven Danzer, PhD, principal investigator on the study and a neuroscientist in the Department of Anesthesia at Cincinnati Children's. "Establishing which cells and mechanisms are responsible for the seizures allows us to begin working on ways to control or eliminate the problem therapeutically, and in a more precise manner."


Epilepsy can develop from a wide range of causes,
including birth defects that disrupt normal brain
development. It can also surface in children and adults
who suffer serious brain injuries.

These individuals can have a high risk
of developing some form of epilepsy,
depending on the location
and severity of their injury,

Steven Danzer, PhD


Technical advances in genetically altering laboratory mice to mimic human disease made it possible for the scientists to generate animals with a specific molecular disruption in dentate gyrus granule cells (DGCs).

DGCs are one of only two populations of neural cells that continue to form in significant numbers in the mature brain – the other being olfactory neurons. This is beneficial considering the hippocampus is responsible for learning and memory, and the dentate gyrus acts as a gate for excitatory signals in the brain that can lead to seizures if not properly regulated.

The presence of abnormal DGCs in epilepsy has been observed for decades, although evidence linking them to seizures was lacking until the current study.


DGCs are one of only two populations
of neural cells that continue to form
in significant numbers
in the mature brain
– the other being olfactory neurons.

Danzer and his colleagues were able to delete a gene called PTEN from mouse DGCs that formed after birth. This caused hyper-activation of a molecular pathway called mTOR (mammalian target of rapamycin), which regulates cell growth and is also linked to tumor formation and cancer when hyper-activated under certain circumstances.

In tests by Danzer and his colleagues, hyper-activation of mTOR caused mice to develop abnormal neural connections among their DGCs – similar to that observed in human temporal lobe epilepsy – and the animals experienced seizures.

Abnormal neural connections and seizures occurred even in mice that had the PTEN gene deleted in less than 10 percent of their total DGC population, strengthening the link between biological disruption of DGCs and seizures.


When researchers treated epileptic mice
with a drug that blocks the mTOR pathway
– rapamycin –
the seizures stopped, solidifying the link to
the PTEN-mTOR pathway.

Rapamycin has been tested successfully
at Cincinnati Children's in the treatment
of a disease called tuberous sclerosis,
in which benign but still dangerous tumors
can form around critical organs.

Interestingly, people with tuberous sclerosis
are also at risk for developing epilepsy.

Steven Danzer, PhD


Newer mTOR inhibitors are also being tested at Cincinnati Children's for the treatment of epilepsy.

Danzer is following up the current study by trying to eliminate abnormal DGCs from the brains of mice that already have epilepsy and to see if this will stop the seizures. Researchers are attempting this by treating mice systemically with diphtheria toxin.

Although diphtheria toxin is not normally toxic to mouse cells, in their experiments the researchers will add a molecule to abnormal mouse DGCs that binds with the toxin. In theory, this should allow the toxin to kill off abnormal DGCs.

If treatment stops the seizures, it would further verify the connection between abnormal DGCs and the onset of epilepsy, Danzer said. This would also allow researchers to begin laboratory testing of prospective therapeutic strategies for treatment and prevention.


Mutations involving PTEN and the mTOR pathway have
been identified in other neurological conditions,
such as autism and schizophrenia.

Danzer believes findings in the current study
will likely attract the interest of researchers studying
these diseases and others involving abnormal
granule neurons generated after birth.


Danzer: "The profound impact of disrupting this pathway in just a small number of granule cells suggests the dentate may be a critical target for mTOR pathway mutations in other neurological diseases. We believe neuroscientists will be surprised by the huge neurological impact of granule cell disruption and interested in the demonstration of a potentially novel disease mechanism."

First author on the current study was Raymond Y.K. Pun, PhD, a researcher in the Department of Anesthesia at Cincinnati Children's. Funding for the research came from the Cincinnati Children's Research Foundation and the National Institute of Neurological Disorders and Stroke (R01NS065020 and R01NS062806).

About Cincinnati Children's:
Cincinnati Children's Hospital Medical Center ranks third in the nation among all Honor Roll hospitals in U.S. News and World Report's 2012 Best Children's Hospitals ranking. It is ranked #1 for neonatology and in the top 10 for all pediatric specialties. Cincinnati Children's is one of the top two recipients of pediatric research grants from the National Institutes of Health. It is internationally recognized for improving child health and transforming delivery of care through fully integrated, globally recognized research, education and innovation. Additional information can be found at www.cincinnatichildrens.org.

Original article: http://www.eurekalert.org/pub_releases/2012-09/cchm-ssb091312.php