Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

October 3, 2012--------News Archive Return to: News Alerts


Central vision is lost in age-related macular degeneration after cells in the retina deteriorate. New research by Stephen Tsang suggests special
adult stem cells could restore sight or prevent vision loss.





WHO Child Growth Charts

       

Stem Cells Improve Visual Function in Blind Mice

New research suggests special adult stem cells could restore sight or prevent vision loss

Central vision is lost in age-related macular degeneration after cells in the retina deteriorate. New research by Stephen Tsang suggests special adult stem cells could restore sight or prevent vision loss.

An experimental treatment for blindness, developed from a patient’s skin cells, improved the vision of blind mice in a study conducted by Columbia ophthalmologists and stem cell researchers.

The findings suggest that induced pluripotent stem (iPS) cells – which are derived from adult human skin cells but have embryonic properties – could soon be used to restore vision in people with macular degeneration and other diseases that affect the eye’s retina.

The study was published online in advance of print in the journal Molecular Medicine.


“With eye diseases, I think we’re getting close
to a scenario where a patient’s own skin cells
are used to replace retina cells destroyed
by disease or degeneration.”

“It’s often said that iPS transplantation
will be important in the practice of medicine
in some distant future, but our paper suggests
the future is almost here.”


Stephen Tsang, MD, PhD
principal investigator
associate professor ophthalmology,
pathology & cell biology.


The advent of human iPS cells in 2007 was greeted with excitement from scientists who hailed the development as a way to avoid the ethical complications of embryonic stem cells and create patient-specific stem cells.

Like embryonic stem cells, iPS cells can develop into any type of cell. Thousands of different iPS cell lines from patients and healthy donors have been created in the last few years, but they are almost always used in research or drug screening.

No iPS cells have been transplanted into people, but many ophthalmologists say the eye is the ideal testing ground for iPS therapies.

“The eye is a transparent and accessible part of the central nervous system, and that’s a big advantage. We can put cells into the eye and monitor them every day with routine non-invasive clinical exams,” Tsang says. “And in the event of serious complications, removing the eye is not a life-threatening event.”

In Tsang’s new preclinical iPS study, human iPS cells – derived from the skin cells of a 53-year-old donor — were first transformed with a cocktail of growth factors into cells in the retina that lie underneath the eye’s light-sensing cells.

The primary job of the retina cells is to nourish the light-sensing cells and protect the fragile cells from excess light, heat, and cellular debris. If the retina cells die – which happens in macular degeneration and retinitis pigmentosa – the photoreceptor cells degenerate and the patient loses vision.

Macular Degeneration is a leading cause of vision loss in the elderly, and it is estimated that 30 percent of people will have some form of macular degeneration by age 75. Macular degeneration currently affects 7 million Americans and its incidence is expected to double by 2020.


In the study, the researchers injected the
iPS-derived retina cells into the right eyes
of 34 mice that had a genetic mutation
causing their retina cells to degenerate.

In many animals, the human cells assimilated
into mouse retina without disruption and functioned
as normal retina cells well into the animals’ old age.

Control mice that received injections of saline
or inactive cells showed no improvement in retina tests.


“Our findings provide the first evidence of life-long neuronal recovery in a preclinical model of retinal degeneration, using stem cell transplant, with vision improvement persisting through the lifespan,” Tsang says. “And importantly, we saw no tumors in any of the mice, which should allay one of the biggest fears people have about stem cell transplants: that they will generate tumors.”

Tsang hopes to begin a clinical trial for macular degeneration patients in the next three years, after more preclinical testing in animal models.

Already a similar trial – testing retina cells derived from embryonic stem cells – has seen encouraging preliminary results. A paper from this study, published earlier this year, reported that the stem cells are safe and have potential to improve the vision of two patients with macular degeneration.

“These results are encouraging, but iPS cells could be a more attractive option than embryonic stem cells,” Tsang says, “because patients may not need drugs to prevent rejection of the transplanted cells.”

Regardless of which cell works better, the prospect of stem cell transplants may mean many people with macular degeneration may never lose their vision.


“We have a good idea which patients
will eventually lose their vision.

In the early stages of macular degeneration
we can tell by looking in the eye,
and new genetic tests can now predict
vision loss with 70 percent accuracy
even before those signs emerge.

If the therapy is safe, we could intervene
very early to prevent much vision loss.”

Stephen Tsang, MD, PhD


The research was supported by NIH grants 5P30CA013696, P30EY019007, and R01EY018213; the Schneeweiss Stem Cell Fund, and the Foundation Fighting Blindness.

Original article: http://www.cumc.columbia.edu/news-room/2012/09/13/stem-cells-improve-visual-function-in-blind-mice/