Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.

WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!




Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

October 3, 2012--------News Archive Return to: News Alerts

The promoter is a base-pair sequence that specifies where transcription begins.

The coding sequence is a base-pair sequence that includes coding
information for the polypeptide chain specified by the gene.

The terminator is a sequence that specifies the end of the mRNA transcript.

WHO Child Growth Charts


Gene Length Matters

Research reveals a surprising fact about human genes – when a protein-coding gene is too short — it becomes inactive!

The findings from Aarhus University also explain how some short genes have adapted to circumvent this handicap.

Human genomes harbour thousands of genes, each of which gives rise to proteins when it is active. But which inherent features of a gene determine its activity?

Researchers have now found that the distance
between the gene start, termed the ‘promoter,’
and the gene end, the ‘terminator,’
is crucial for the activity of a protein-coding gene.

If the distance is too short,
the gene is transcriptionally repressed
and that gene's output severely decreased.

This finding outlines a completely new
functional interplay between gene ends.

The research team includes Postdoctoral Scholar, Pia Kjølhede Andersen, and Senior Researcher, Søren Lykke-Andersen from the Danish National Research Foundation’s Centre for mRNP Biogenesis and Metabolism. Their work was published in Genes & Development

Small genes utilise specialised terminators

Fortunately, most human protein-coding genes are long and are therefore not repressed by this mechanism. However, some genes, e.g. ‘replication-dependent histone genes’, are very short. How do such genes express their information at all? Interestingly, many of these differ from the longer protein-coding genes by containing specialised terminators. And in fact, if such a specialised terminator replaces a normal terminator in a short gene context, the short gene is no longer transcriptionally repressed.

It appears that naturally occurring short genes
have evolved ‘their own’ terminators
to achieve high expression levels.

The new findings add to a complex molecular network of intragenic communication and help us to understand the basic function of genes.

The researchers behind the results that have just been published in the international journal Genes & Development are affiliated with the Danish National Research Foundation’s Centre for mRNP Biogenesis and Metabolism at the Department of Molecular Biology and Genetics, Aarhus University.

Link to the article in Genes & Development:
Promoter-proximal polyadenylation sites reduce transcription activity
Pia K. Andersen, Soren Lykke-Andersen, and Torben Heick Jensen
Department of Molecular Biology and Genetics, Centre for mRNP Biogenesis and Metabolism, C.F. Møllers Allé, Building 1130, Aarhus University, 8000 Aarhus C, Denmark

Original article: http://mbg.au.dk/en/news-and-events/news-item/artikel/length-matters-in-gene-expression/