Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

October 5, 2012--------News Archive Return to: News Alerts


Using a
mouse model of Rett syndrome, researchers were able to reverse abnormalities
in brain activity and improve neurological function by treating the animals
with an FDA-approved anesthesia drug, ketamine.

WHO Child Growth Charts

       

Abnormal Brain Function in Rett Syndrome Mice Reversed

New brain mapping shows that the regions of low brain activity overlap with regions of the brain that are also under-active in humans with classic autism — and the anesthesia drug, ketamine, improved brain activity

A promising study out today in the prestigious Journal of Neurosciences showed that in a mouse model of Rett syndrome, researchers were able to reverse abnormalities in brain activity and improve neurological function by treating the animals with an FDA-approved anesthesia drug, ketamine.


Rett syndrome is among the most severe
autism-related disorders, affecting about
one in 10,000 female births per year,
with no effective treatments available.


"These studies provide new evidence that drug treatment can reverse abnormalities in brain function in Rett syndrome mice," says David Katz, PhD, professor of neurosciences, Case Western Reserve University School of Medicine and senior author of the study. "They also provide new leads as to what kinds of drugs might be effective in individuals with Rett syndrome."

Neuroscientists at Case Western Reserve University School of Medicine were able to successfully map differences in the brain activity of normal mice and those with a genetic mutation that mirrors the cause of Rett syndrome in humans. They found that – compared to normal mice – Rett syndrome mice showed regions of abnormally low activity in the front of the brain (forebrain) and regions of abnormally high activity in the back of the brain (brainstem).

Importantly, they found that the regions of low activity overlap with regions of the brain that are also under-active in humans with classic autism. This indicates there may be common mechanisms underlying abnormal behaviors in the two diseases.

The identification of these brain regions provided clues into specific areas to target for treatment. Based on previously published findings that ketamine activated neurons in the forebrain, the researchers gave the drug to the Rett syndrome mice and found it increased levels of brain activity in those regions and improved neurological function. Importantly, the drug was effective at a low dose that did not produce anesthesia.


Katz strongly cautioned that, because ketamine can have
potent anesthetic effects and isa controlled substance,
further work is needed to establish the safety of
ketamine in patients with Rett syndrome.

Moreover, ketamine has never been used to treat
a chronic condition, and additional studies are required
to determine whether or not this is feasible and safe.

However, safer drugs acting in the same
pathways as ketamine may be available.


Unlike most disorders on the autism spectrum, researchers know the cause of Rett syndrome – a genetic change on the X chromosome, which helps explain why it affects girls almost exclusively.

Families don't usually know if a newborn has Rett syndrome because affected children can appear normal for the first six to 18 months after birth. Then, parents start to notice the infant losing the ability to speak, move, eat or even breathe normally. Many girls with Rett syndrome can live into adulthood and are so disabled that they require round-the-clock care.

One in 88 Americans is affected by an autism-related disorder, according to the Centers for Disease Control. Those affected by Rett syndrome can lose – to varying degrees – the ability for normal human interaction. They can be socially withdrawn, struggle to communicate and tend to engage in repetitive behaviors – all hallmarks of disorders that fall within the autism spectrum.

Katz's team in the School of Medicine included post-doctoral fellows Miriam Kron, PhD and Michael Ogier, PhD, research assistants C. James Howell and Ian Adams and undergraduate students Michael Ransbottom and Diana Christian. Kron and Howell are the lead authors on the Journal of Neuros```cience paper.

The findings were supported by grants from the National Institute of Neurological Diseases and Stroke at the National Institutes of Health (NS-057398), the International Rett Syndrome Foundation and the first ever grant awarded in Northeast Ohio by Autism Speaks, the world's leading autism science and advocacy organization.

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Nine Nobel Laureates have been affiliated with the school of medicine.

Annually, the School of Medicine trains more than 800 MD and MD/PhD students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News & World Report "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002. http://casemed.case.edu.

Original article: