Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

October 5, 2012--------News Archive Return to: News Alerts


To discover smells that helped initiate suckling, researchers introduced newborn mice
delivered by Caesarean section to mom's teats washed clean and then soaked in either
their mom's amniotic fluid, the mother's saliva (from being licked clean),
mother's breast milk, or mother's urine.

Only the breasts that smelled of the mother's amniotic fluid initiated suckling.

WHO Child Growth Charts

       

Why Babies Need to Learn Mom's Smell

Newborn mice use mom's unique odor, not a pheromone, to begin breastfeeding, a critical behavior to sustain life

Researchers show for the first time that a mammal begins to suckle its mother's milk through a learned response built on learning her unique combination of smells. When it is born, the newborn is exposed to the smell of its mother's amniotic fluid and the baby then responds to those smells to feed.


Prevailing thought has been that pheromones
– chemicals that trigger an innate behaviour –
drove the suckling response as an automatic behavior.

The new work determines that, in mice,
the smells must be learned before
the behavior can occur.

Suckling is a critical step for survival in mammals,
which are defined by giving birth to offspring
that need to feed from their mother's milk.
The newborn must begin to feed soon after birth
or it will die. It is a crucial, defining behavior
in mammals and offers researchers
an opportunity to investigate
the biology of instinct.


The work was published in Current Biology on October 4, 2012.

Previous research into suckling has shown that European rabbit mothers use a pheromone to initiate suckling in their newborn babies. This led most scientists to think that all mammals were likely to use the same mechanism. Keen to discover the pheromone involved in other mammals, the team chose the mouse because they have a parenting style similar to that of humans, nurturing and caring for their young.

"We were expecting to find a pheromone controlling suckling in mice, but we found a completely different mechanism at work," says Dr Darren Logan, lead author of the study from the Wellcome Trust Sanger Institute. "We have shown for the first time that it is not a pheromone response in mice, but a learned response, founded on a mix of odours: the unique signature smell of the mother."

To discover the smells involved in initiating suckling, researchers introduced newborn mice delivered by Caesarean section to breasts that had been washed clean and then soaked in one of the fluids that a baby would first inhale at birth. These included amniotic fluid, the mother's saliva (from being licked clean), breast milk and urine. Only the breasts that smelt of the mother's amniotic fluid initiated suckling.

The team then tested for the presence of a pheromone in the amniotic fluid. They fed pregnant mice strong smelling foods, such as garlic, to change the signature odour of the mother. If a pheromone was involved, the garlic would have no effect on suckling. In fact only those mice that had previous exposure to the amniotic fluid with the strong smell from their mother were able to feed successfully, proving the signature odour must be learned.

"Our work shows us that there is no species-wide pheromone that makes newborn mice feed, but that the mouse pups are actually learning their mother's unique and variable mix of smells at birth," explains Associate Professor Lisa Stowers, senior author from The Scripps Research Institute. "So, although the suckling response may look like a pheromone-mediated behaviour, it is actually initiated through a fundamentally different process."

Supporting evidence for this conclusion comes from genetic research conducted by the team. They found that mice who lack a critical gene in the pheromone-detecting region of the nose, called the vomeronasal organ (VNO), were able to locate the mother's nipple and to suckle. In contrast newborn mice who lacked the ability to smell regular smells, detected in a region called the main olfactory epithelium (MOE) struggled with feeding.


"This is a neat study which shows the value
of studying the development underlying
an apparently 'innate' behavior.

The surprising result is that mouse pups
use the individual odours of the mother
to find their first feed. It is a reminder
of the way that evolution uses whatever works:
there is more than one way to
find the first milk meal.

The rabbit has a pheromone in the milk,
humans may have one around the nipple,
and mice learn the individual odour of their mother.
All three enable the vital task of
getting the newborn to suckle."

Dr Tristram Wyatt
University of Oxford


Learning a signature odour may be a critical component of other innate behaviours in mammals. Because humans also form an intensive, nurturing bond with their babies, it suggests that genetic manipulation of the ability to smell in mice will be a useful way to research the neural pathways involved in human instinctive behaviour.

Darren W Logan, Lisa J Brunet, William R Webb, Tyler Cutforth, John Ngai, Lisa Stowers. (2012) 'Learned recognition of maternal signature odors mediates the first suckling episode in mice'

Published in Current Biology 4 October 2012: DOI: 10.1016/j.cub.2012.08.041

Funding
This work was supported by the NIH-NIDCD and the Skaggs Foundation, and Wellcome Trust grant.

Participating Centres
* Department of Cell Biology, 2Center for Mass Spectrometry, The Scripps Research Institute, La Jolla, CA 92037, USA.
* Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
* Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
* Office of Research Development, University of California, Irvine, Irvine, CA 92697, USA

Selected Websites
The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation.

http://www.scripps.edu

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.

http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

http://www.wellcome.ac.uk

Original article: http://www.sanger.ac.uk/about/press/2012/121004.html