Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

October 8, 2012--------News Archive Return to: News Alerts


Manipulating the
pacemaker neurons in fruit flies, scientists changed the electrical
activity of clock neurons producing major changes in the expression of circadian genes.

WHO Child Growth Charts

       

Researchers Find Electricity in Our Biological Clock

Biologists from New York University have uncovered new ways our biological clock's neurons use electrical activity to help keep behavioral rhythms in order

The findings, which appear in the journal Current Biology, also point to fresh directions for exploring sleep disorders and related afflictions.

"This process helps explain how our biological clocks keep such amazingly good time," said Justin Blau, an associate professor of biology at NYU and one of the study's authors.

Blau added that the findings may offer new pathways for exploring treatments to sleep disorders because the research highlights the parts of our biological clock that "may be particularly responsive to treatment or changes at different times of the day."

The study's other co-authors were: Dogukan Mizrak and Marc Ruben, doctoral students in NYU's Department of Biology; Gabrielle Myers, an undergraduate in the Biology Department; Kahn Rhrissorrakrai, a post-doctoral researcher; and Kristin Gunsalus, an associate professor at NYU's Center for Genomics and Systems Biology and NYU Abu Dhabi.


In a previous study, Blau and his colleagues
found that rhythms in expression of
a potassium channel (Ir) helps link the
biological clock to the activity of pacemaker neurons.

But Ir does not function as a simple output
of the clock—it also feeds back to regulate
the core clock. The scientists want to understand
the nature of this feedback.


In exploring this mechanism, the researchers examined the biological, or circadian, clocks of Drosophila fruit flies, which are commonly used for research in this area. Earlier studies of "clock genes" in fruit flies allowed the identification of similarly functioning genes in humans.

By manipulating the neuronal activity of pacemaker neurons, the researchers showed that changes in the electrical activity of clock neurons produce major changes in the expression of circadian genes.

With increased electrical activity in the evening, when clock neurons are normally fairly inactive, the researchers found that clock neurons have a circadian gene-expression profile more typically found in morning hours.

In contrast, by diminishing electrical activity in the morning, gene expression was shifted to look more like it does in the evening. In other words, the electrical state of a clock neuron can dramatically affect circadian gene expression in clock neurons.

Blau: "What was striking about these results was the coordination between the firing of neurons and gene expression. This is one of the remarkable processes that helps keep clock neurons stay synchronized and run so accurately."

To find the mechanism, Blau's lab brought in the computational expertise of Gunsalus' lab at NYU to identify regulatory DNA motifs in genes that respond to neuronal activity in clock neurons. One of these motifs binds the well-known set of factors that regulate gene expression in neurons involved in learning and memory.


"These data really make us focus
on 'the clock' as a neuronal system
rather than a set of genes."

Justin Blau.


Original article: http://www.eurekalert.org/pub_releases/2012-10/nyu-nrf100412.php