Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

October 26, 2012--------News Archive Return to: News Alerts


Thanks to their theoretical approach, the authors confirmed that
after overcoming initial resistance to stretching, at a force of
around 65 piconewtons (pN) in strength, the DNA stretches
to almost twice its original length while also becoming less rigid.

WHO Child Growth Charts

       

DNA’s Double Stranded Stretch

What happens to DNA strands when stretched to the breaking point?

Theoretical physicists like to play with very unconventional toys.

Manoel Manghi from Toulouse University in France and his colleagues have adopted a seemingly playful approach to examining what happens to a double stranded molecule of DNA when it is stretched to the breaking point, in a study about to be published in EPJ E.


Instead of using optical tweezers to stretch DNA as
previously done in experimental settings, the authors
focused on using a theoretical model to account for the
structural deformations of DNA and determine how
its mechanical characteristics could explain
certain biological processes.

Over fifteen years ago, scientists discovered that DNA
undergoes two structural transitions when pulled from
both ends. The problem is that in experimental
conditions these two transitions can overlap and
become more difficult to observe.
Instead, Manghi and colleagues relied on a standard
mathematical tool referred to as a ‘coupled discrete
wormlike chain-Ising model’
to simulate DNA
stretching and match experimental observations.


Thanks to their theoretical approach, the authors confirmed that after overcoming initial resistance to stretching, at a force of around 65 piconewtons (pN) in strength, the DNA stretches to almost twice its original length while also becoming less rigid.

They also confirmed the other known structural transition occurring at around 135 pN. Although the critical forces of both transitions depend on the DNA sequence, they found it is the second one that most depends on it.

Beyond 135pN, DNA strands start peeling apart into single stranded DNAs that are similar to those obtained when DNA is heated up and undergoes thermal denaturation.

Therefore, this mathematical model bridges the gap between force-induced mechanical stretching and thermal denaturation and could potentially help us to understand how DNA performs its biological functions as in its' interaction in the production of proteins, and how it is packaged into viruses.

Reference:
M. Manghi, N. Destainville, J.Palmeri (2012) Mesoscopic models for DNA stretching under force: new results and comparison to experiments, European Physical Journal E 35: 110, DOI 10.1140/epje/i2012-12110-2
The full-text article is available for journalists on request.

Original article: http://www.springer.com/about+springer/media/springer+select?SGWID=0-11001-6-1393672-0