Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

October 31, 2012--------News Archive Return to: News Alerts


The intestine of the planarian Schmidtea mediterranea, a model for stem cell-based
organogenesis. In this image, intestinal cells (green) are labeled with a monoclonal
antibody that recognizes intestinal phagocytes. Enteric muscles surrounding each
intestinal branch are labeled with a second antibody (pseudocolored in blue).

Image credit: David Forsthoefel, Newmark laboratory.

WHO Child Growth Charts

       

Using Planaria to Understand Organ Regeneration

In a new study, scientists have identified genes that control growth and regeneration of the intestine in the freshwater flatworm called planarian Schmidtea mediterranea

How animals repair their internal organs after injury is not well understood. Planarian flatworms are useful models for studying this question. After injury, they are able to re-grow missing body parts, as well as all as organs that are damaged or lost, such as brain, eyes, and intestine.

The work was published in the October 16 issue of Developmental Cell, by corresponding author Phillip Newmark, professor of cell and developmental biology and Howard Hughes Medical Institute Investigator, and colleagues.

Injury initiates a complex set of cellular events. In planarians, specialized somatic stem cells called neoblasts divide and give rise to all of the different cell types required to rebuild fully functional body parts. Old tissue remaining after amputation remodels and integrates with the new cells that are produced.

The molecular signaling pathways coordinating these cellular behaviors to achieve organ regeneration have not been well characterized. David Forsthoefel, a postdoctoral researcher in Newmark’s laboratory and the lead author on the study, wanted to address the problem using the planarian intestine as a “model organ,” in part because so few animals are capable of repairing severe damage to their digestive systems.

Forsthoefel: “The ability to recover from loss of digestive tissue is rare in the animal kingdom. What we learn from how a simple worm deals with gut damage might one day help us to come up with better medical therapies, for example in the treatment of short bowel syndrome, in which segments of intestine must be removed from patients with digestive diseases, leading to impaired nutrient absorption.”

Forsthoefel developed a method for purifying a single intestinal cell type from the planarian gut. He and Newmark lab members then went on to identify over a thousand genes that were uniquely expressed at higher levels in intestinal cells than in the surrounding planarian tissues.

Guessing that some of these genes would have important roles during intestinal growth and regeneration, they probed the function of a subset of these genes using a technique called RNA interference, in which the expression of individual genes is selectively inhibited. They were able to pinpoint functions for specific genes, for example in the establishment of the appropriate pattern of intestinal branches, and the production of functional intestinal cells capable of taking up nutrients.

The authors also identified a transcription factor called nkx-2.2 that, although expressed in the intestine, was required for neoblasts to proliferate in various contexts, including after injury. This result suggests a potential role for the intestine in regulating stem cell division, a result Forsthoefel is following up by identifying genes downstream of Nkx-2.2 that might have more direct roles in communication between the intestine and neoblasts.

“How cells in the vicinity of damaged tissue contribute to the choices stem cells make in response to injury is an area of regeneration biology where much more research is needed,” Forsthoefel said.

The field of regeneration research is rife with such uncharted territory. How do animals manage to produce the correct number specific cell types, at the correct locations? What are the signals that instruct stem cells to become specific cell types, and where do they come from? How is organ-specific morphology, for example the number of intestinal branches, determined? This study from the Newmark lab, the first systematic effort to elucidate intestinal morphogenesis in planarians, lays the groundwork for addressing many of these fundamental questions of organ regeneration.

Further reading:
The full text is available in Developmental Cell, Science Codex has also covered the finding., Science Daily.

Original article: http://mcb.illinois.edu/news/feature/270