Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

November 2, 2012--------News Archive Return to: News Alerts


Prescence of srGAP3 and Lamellipodin in the developing mouse brain.

srGAP3 and Lamellipodin (Lpd) expressed in the mouse embryonic brain.
At E11.5, srGAP3 and Lpd were co-expressed in a specific region of the developing pallidum (Pal) and in the V and VIII ganglia (V and VIII).

Additional abbreviations: LV, lateral ventricle; Str, striatum; H, hippocampus; Hyp, hypothalamus. Scale bar: 0.5mm. All sections are coronal.

WHO Child Growth Charts

       

Single Protein May Be Root of Several Childhood Psychiatric Disorders

New research in The FASEB Journal suggests that dysfunction in the SRGAP3 protein may lead to schizophrenia, hydrocephalus, mental retardation and some forms of autism in childhood

A new research discovery has the potential to revolutionize the biological understanding of some childhood psychiatric disorders. Specifically, scientists have found that when a single protein involved in brain development, called "SRGAP3," is malformed, it causes problems in the brain functioning of mice that cause symptoms that are similar to some mental health and neurological disorders in children.

Because this protein has similar functions in humans, it may represent a "missing link" for several disorders that are part of an illness spectrum. In addition, it offers researchers a new target for the development of treatments that can correct the biological cause rather than treat the symptoms. This discovery was published in November 2012 print issue of The FASEB Journal.


"Developmental brain disorders such as schizophrenia,
hydrocephalus, mental retardation and autism
are among the most devastating diseases in children
and young adults. We hope that our findings will
contribute to a better understanding, and in the end,
to better treatments for these disorders."

Dusan Bartsch, Ph.D.
researcher, Department of Molecular Biology
Central Institute of Mental Health, University of Heidelberg in Mannheim, Germany


Bartsch and colleagues made this discovery using mice with the SRGAP3 protein inactivated. Then they conducted several experiments comparing these mice to normal mice. The mice with inactive SRGAP3 showed clear changes in their brains' anatomy, which resulted in altered behavior similar to certain symptoms in human neurological and psychiatric diseases.


An involvement of SRGAP3 in different brain disorders
could indicate that these disorders are possibly connected,
as SRGAP3 is a key player in brain development.

These different disorders could be connected via the
SRGAP3 protein because they all emerge from
disturbed development of the nervous system.


"Since Freud put biological psychiatry on the map, we've slowly increased our understanding of how mental health is dictated by chemistry," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "Eventually we'll understand the complex biology underlying most psychiatric illnesses, from genes to proteins to cell signaling to overt behaviors. Along the way, as in this report, we're likely to find single targets close to the roots of apparently different mental illnesses."

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). Celebrating 100 Years of Advancing the Life Sciences in 2012, FASEB is rededicating its efforts to advance health and well-being by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Robert Waltereit, Uwe Leimer, Oliver von Bohlen und Halbach, Jutta Panke, Sabine M. Hölter, Lillian Garrett, Karola Wittig, Miriam Schneider, Camie Schmitt, Julia Calzada-Wack, Frauke Neff, Lore Becker, Cornelia Prehn, Sergej Kutscherjawy, Volker Endris, Claire Bacon, Helmut Fuchs, Valérie Gailus-Durner, Stefan Berger, Kai Schönig, Jerzy Adamski, Thomas Klopstock, Irene Esposito, Wolfgang Wurst, Martin Hrabě de Angelis, Gudrun Rappold, Thomas Wieland, and Dusan Bartsch. Srgap3−/− mice present a neurodevelopmental disorder with schizophrenia-related intermediate phenotypes. FASEB J 26:4418-4428, doi:10.1096/fj.11-202317 ; http://www.fasebj.org/content/26/11/4418.abstract

Original article: http://www.eurekalert.org/pub_releases/2012-10/foas-spt103112.php