Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

November 5, 2012--------News Archive Return to: News Alerts


In fruit flies with two normal copies of the spastin gene, Rolls and her team found
that severed axons were able to regenerate. However, in fruit flies with two or even
only one abnormal spastin gene, the severed axons were not able to regenerate.

WHO Child Growth Charts

       

Gene Required for Nerve Regeneration Identified

A gene that is associated with regeneration of injured nerve cells has been identified by scientists at Penn State University and Duke University

The team, led by Melissa Rolls, an assistant professor of biochemistry and molecular biology at Penn State, has found that a mutation in a single gene can entirely shut down the process by which axons – the parts of the nerve cell that are responsible for sending signals to other cells – regrow themselves after being cut or damaged.

"We are hopeful that this discovery will open the door to new research related to spinal-cord and other neurological disorders in humans," Rolls said. The journal Cell Reports will publish an early online copy of the paper on 1 November, and also will include the paper in the monthly issue of the journal, which will be published on 29 November 2012.

Rolls explained that axons, which form long bundles extending out from nerve cells, ideally survive throughout an animal's lifetime. To be able to survive, nerve cells need to be resilient and, in the event of injury or simple wear and tear, some can repair damage by growing new axons.

Earlier research from Rolls and others suggested that microtubules – the intracellular "highways" along which basic building blocks are transported – might need to be rebuilt as an important step in this type of repair.

"In many ways this idea makes sense: in order to grow a new part of a nerve, raw materials will be needed, and the microtubule highways will need to be organized to take the new materials to the site of growth," Rolls said.

The Rolls team therefore started to investigate the role of microtubule-remodeling proteins in axon regrowth after injury. In particular, the team members focused on a set of proteins that sever microtubules into small pieces. Out of this set, a protein named spastin emerged as a key player in axon regeneration.


"The fact that the spastin protein plays a critical role
in regeneration is particularly intriguing because, in
humans, it is encoded by a disease gene called SPG4.

When one copy of this gene is disrupted, affected
individuals develop hereditary spastic paraplegia (HSP),
which is characterized by progressive lower-limb
weakness and spasticity as the long-motor axons in the
spinal cord degenerate.

Identifying a new neuronal function for spastin
may help us to understand this disease."


Melissa Rolls
assistant professor, biochemistry and molecular biology
Pennsylvania State University


To study the role of spastin, Rolls and her team chose the fruit fly as their model organism. "On the molecular level, many of the processes associated with nerve-cell growth and regrowth are the same in humans as in fruit flies," Rolls said. "And, like all other animals including humans, fruit flies have two copies of every gene -- one from each parent -- so different combinations of each gene can lead to different observable traits."

The team members bred three genetically distinct groups of fruit flies in the laboratory to observe how various spastin gene combinations might affect the behavior of nerve cells after injury. The first group of flies had two normal copies of the gene; the second had one normal copy and one mutant copy; while the third had two mutant copies. Then, in all three groups, the scientists cut the axons of the flies' nerve cells and observed the regeneration process.

Rolls: "In fruit flies with two normal copies of the gene, we observed that severed axons elegantly reassembled themselves. This process is supposed to take place if the fly is to heal from nerve trauma since life events, as well as wear and tear, tend to cause such damage. But, interestingly, in the other two groups -- the fruit flies with two or even one abnormal spastin gene -- there was simply no regrowth, indicating that what we have here is a dominant problem."


Rolls explained that dominant diseases arise when
only one copy of a disease gene is disrupted.
For example, Huntington's Disease in humans is a
dominant disease because people who have inherited
a normal gene from one parent and an abnormal gene
from the other parent still become ill.

Meanwhile, cystic fibrosis is a recessive disease:
people with at least one normal gene copy
do not manifest the disease at all.


The scientists also found that an impaired spastin gene affected only how the axons regrew after being severed. That is, the gene did not seem to play a role in the developmental stage when axons were being assembled for the first time. In addition, the researchers found that, while the gene affected the flies' axons, their dendrites – the parts of the neuron that receive information from other cells and from the outside world – continued to function and repair themselves normally.

Rolls: "Now that we know that spastin plays an important role in axon regeneration and also that this gene is dominant, we have opened up a possible path toward the study of human diseases involving nerve-cell impairment. In fact, our next step is to probe the link between hereditary spastic paraplegia (HSP) and axon regeneration."

Rolls added that the SPG4 gene that encodes human spastin is only one of the disease genes associated with HSP, so she and her colleagues now are testing whether other disease genes also play a role in nerve-cell regeneration.

In addition to Rolls, other researchers who contributed to this study include Michelle C. Stone, Kavitha Rao, Kyle W. Gheres, Seahee Kim, Juan Tao, Caroline La Rochelle, and Christin T. Folker from Penn State; and Nina T. Sherwood from Duke University.

The research was funded by the Spastic Paraplegia Foundation; the National Institutes of Health through its National Institute of Neurological Disorders and Stroke, and its National Institute of General Medical Sciences; and the Pew Scholars in the Biomedical Sciences.

IMAGE
A high-resolution image associated with this research is online at http://www.science.psu.edu/news-and-events/2012-news/Rolls11-2012.

IMAGE CAPTION

In fruit flies with two normal copies of the spastin gene, Rolls and her team found that severed axons were able to regenerate. However, in fruit flies with two or even only one abnormal spastin gene, the severed axons were not able to regenerate.

IMAGE CREDIT
Rolls lab, Penn State University

GRANT NUMBERS
NINDS (R21 NS066216 and R01 NS63896) and NIGMS (R01 GM085115)

Original article: http://live.psu.edu/story/62348