Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

November 20, 2012--------News Archive Return to: News Alerts


Three-dimensional computerized tomography images show normal skull with arrow
pointing at the sagittal suture (A), narrow and elongated skull of a child with a closed
sagittal suture (B), and a view of the skull after surgical correction of the sagittal
craniosynostosis (C). Copyright UC Regents 2012








WHO Child Growth Charts

       

Basis for Birth Defect Causing Premature Skull Closure in Infants

International team has identified two areas of the human genome associated with the most common form of non-syndromic craniosynostosis ― or premature closure of the bony plates of the infant skull

"We have discovered two genetic factors that are strongly associated with the most common form of premature closure of the skull," said Simeon Boyadjiev, professor of pediatrics and genetics, principal investigator for the study and leader of the International Craniosynostosis Consortium. It took a team of geneticists, pediatricians, surgeons and epidemiologists from 23 institutions across three continents.

"These findings may one day lead to prenatal screening and diagnostic tests for this condition or early interventions to prevent it," said Boyadjiev, who is a researcher affiliated with the UC Davis MIND Institute.

The study, "A genome-wide association study identifies susceptibility loci for non-syndromic sagittal craniosynostosis near BMP2 and within BBS9," is published online today in the journal, Nature Genetics.


During fetal and early child development,
the skull is made of separate bony plates that
allow for growth of the head. The borders
between the plates do not normally fuse
completely until a child is about 2 years old,
leaving temporary "soft spots" at the
intersection of the seams.

If the bones fuse too early ― the condition
called craniosynostosis ― a child will develop
an abnormally shaped head. Left untreated, the
disorder causes complications due to brain
compression, such as neurologic and visual
problems and learning disabilities.

Typically, craniosynostosis requires
extensive neurosurgical correction.


About 20 percent of cases of craniosynostosis have previously been linked to a number of different genetic syndromes, but the vast majority of cases (not associated with a syndrome involving other birth defects) arise without any known family history or cause. The most common form of non-syndromic craniosynostosis ― affecting about 1 in 5,000 newborns ― involves the sagittal suture, the main seam that runs down the center of the top of the skull. These cases were the subject of the investigation.


Although the condition has long been
thought to be partially determined by genes as
it is three times more common in boys than in girls,
and identical twins are much more likely to both
be affected than non-identical twins,
the exact basis was unclear.


To help determine the cause, the investigators conducted the first genome-wide association study for the disorder, which involves scanning the entire genome of a group of people with craniosynostosis and comparing it to a control group of people without the condition.

The study searched for single nucleotide polymorphisms (abbreviated as SNPs and called "snips") that are associated with craniosynostosis. SNPs are DNA changes in which a single nucleotide differs from the usual one at that position. There are some three billion nucleotides, the basic building blocks of DNA, in the human genome.

The study first evaluated the DNA ― extracted from whole blood or oral samples ― of 214 children and both of their parents, who did not have the condition, and restricted their final analysis to a group of 130 non-Hispanic white child-parent trios. This approach reduces the genetic variability inherent to individuals from different ethnicities.


Their results identified very strong associations to
SNPs in two areas of the genome, coding for bone
morphogenetic protein 2 (BMP2) and Bardet-Biedl
syndrome 9 protein (BBS9). Both proteins are
known to play a role in skeletal development.


The findings were replicated in another population of 172 cases of children with the condition and 548 unrelated controls. The extensive international collaboration came about because of the desire to include as many cases as possible worldwide to strengthen the findings.

Boyadjiev: "No matter how we analyzed the data ― whether we included familial cases, cases with other minor anomalies, or mixed children of different ethnic groups together, these two genetic factors were highly significant. This provides strong evidence that non-syndromic sagittal craniosynostosis has a major genetic component and identifies where the problem is likely to originate."


Boyadjiev believes that genetic differences do not
fully explain the condition and that other genes and
environmental factors are likely important.

He likened the condition to spina bifida. Infants who
develop this defect in their spine are known to have
a genetic propensity, but vitamin supplementsof folic
acid to pregnant women can prevent many cases.

Boyadjiev plans to extend his research to find the exact
disease-causing genetic variants and to study other
types of craniosynostosis in various ethnic groups.

He will also search for a marker in the blood of
expectant mothers to identify fetuses at risk for
craniosynostosis, which one day may lead to an
intervention during pregnancy
to prevent craniosynostosis.


"The identification of two biologically plausible candidate genes affecting susceptibility to non-syndromic sagittal craniosynostosis provides promising leads in the search for understanding how these conditions develop," said Emily Harris, chief of the translational genomics research branch at the National Institutes of Health's Institute of Dental and Craniofacial Research.

Other study authors include the following: Cristina M. Justice, Yoonhee Kim and of the U.S. National Human Genome Research Institute; Garima Yagnik, Craig Senders, James Boggan, Marike Zwienenberg-Lee, Jinoh Kim and Alexander F. Wilson of UC Davis School of Medicine; Inga Peter, Ethylin Wang Jabs, Monica Erazo, Xiaoqian Ye, Edmond Ainehsazan, Lisong Shi and Peter J. Taub of Mount Sinai School of Medicine; Michael L. Cunningham of University of Washington and Seattle Children's Research Institute; Virginia Kimonis of UC Irvine School of Medicine; Tony Roscioli of University of New South Wales, Australia; Steven A. Wall and Andrew O.M. Wilkie, John Radcliffe Hospital, United Kingdom; Joan Stoler of Children's Hospital Boston; Joan T. Richtsmeier and Yann Heuzé of Pennsylvania State University; Pedro A. Sanchez-Lara of University of Southern California; Michael F. Buckley of SEALS, Australia; Charlotte M. Druschel, Michele Caggana and Denise M. Kay of the Wadsworth Center, New York State Department of Health; James L. Mills of Eunice Kennedy Shriver National Institute of Child Health and Human Development; Paul A. Romitti of University of Iowa; Ophir D. Klein of UC San Francisco School of Medicine and Cyrill Naydenov of the Medical University, Sofia, Bulgaria.

The research was supported by grants from several components of the U.S. National Institutes of Health (NIH), including the National Institute of Dental and Craniofacial Research, the National Center for Research Resources, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Center for Advancing Translational Sciences, and the National Human Genome Research Institute (some of the NIH funding was provided through the American Recovery and Reinvestment Act). NIH also supported the study through its Intramural Research Program and through a contract to the Johns Hopkins University. Other support for the research was provided by the U.S. Centers for Disease Control and Prevention, the Robert Wood Johnson Foundation, the University of Southern California Child Health Research Career Development Program and the UCLA Child Health Research Career Development Program. Boyadjiev also is supported by the Children's Miracle Network endowed chair in pediatric genetics.

The UC Davis School of Medicine is among the nation's leading medical schools, recognized for its research and primary-care programs. The school offers fully accredited master's degree programs in public health and in informatics, and its combined M.D.-Ph.D. program is training the next generation of physician-scientists to conduct high-impact research and translate discoveries into better clinical care. Along with being a recognized leader in medical research, the school is committed to serving underserved communities and advancing rural health. For more information, visit UC Davis School of Medicine at medschool.ucdavis.edu.

Original article:
http://www.ucdmc.ucdavis.edu/publish/news/newsroom/7116