Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

November 26, 2012--------News Archive Return to: News Alerts


“Calcium is crucial for cell signaling, and keeping calcium at a certain level in the mitochondria is important to help regulate various cell processes and physiology,” says co-senior author Muniswamy Madesh, PhD.











WHO Child Growth Charts

       

Team Identifies Gatekeeper Protein, New Details on Mitochondria

Researchers have identified a protein that serves as a gatekeeper for controlling the rush of calcium into the cell’s power source, the mitochondria. Without this calcium spigot under control, calcium levels can run amok, contributing to cardiovascular disease, diabetes and neurodegeneration

The findings, reported online October 25, 2012, in the journal Cell, add important new insights into the inner workings of the mitochondria and may eventually help scientists better understand and target certain cellular processes gone awry, leading to new therapies for disease.

Scientists involved in the research are from Temple University’s Center for Translational Medicine and the University of Pennsylvania. Their results, which appeared November 25, 2012 in an advance online issue of the journal Nature Cell Biology, may also point to new treatment opportunities. Understanding how to manipulate MCUR1 may help in the development of treatments for disease conditions involving excessive calcium in the cell, such as cardiovascular disease and stroke.


“Calcium is crucial for cell signaling, and keeping
calcium at a certain level in the mitochondria is
important to help regulate various cell processes
and physiology.


“We’ve shown this gatekeeper establishes a
threshold for calcium and prevents it from rushing
in and overwhelming the mitochondria, which if
unregulated, can act as a sponge and soak up large amounts of calcium in the cell. These results may
help us find new ways to control calcium levels
and head off problems that might lead to disease.”

Muniswamy Madesh,,PhD
Assistant Professor of Biochemistry,
Temple University School of Medicine, and member of
Temple’s Center for Translational Medicine
.


Maintaining a proper level of calcium is imperative for cells to work properly, and is particularly important in the mitochondria. Cells rely on mitochondria to generate usable energy sources in the form of the chemical ATP, which is necessary to carry out normal cellular metabolism and other activities.

ATP production in turn depends on calcium, or rather, charged calcium ions that can flow into the mitochondria from the cell’s reservoir in the cytoplasm. Scientists have studied calcium uptake by mitochondria for some five decades, but the details of the mechanisms for managing it under normal conditions were unclear.

Dr. Madesh, co-senior author Kevin Foskett, PhD, at the University of Pennsylvania, and their co-workers may have at least in part solved this mystery. They found a molecular mechanism – a mitochondrial “gatekeeper” protein called MICU1 – that guards a protein pore, controlling how much calcium comes into the mitochondria. The researchers found that MICU1 works with this calcium channel pore, MCU, to set a threshold for the amount of calcium coming into the mitochondria specifically to enable the cell to maintain a level of calcium in mitochondria under normal “resting conditions.”

Using a technique to silence gene and protein expression, the researchers found that when they turned off MICU1, excess cellular calcium was rapidly taken up by the mitochondria. When they re-expressed the molecule, they found that once again the calcium influx was under control. MICU1 detected calcium in the surrounding mitochondrial matrix at a certain level, maintaining comparatively low levels of mitochondrial calcium – about five to six times lower than what is considered “equilibrium.”

“This gave us a clue that maybe there is a threshold at which mitochondria sense cellular calcium, and this protein acts like a sensor,” Dr. Madesh noted.


“We’ve shown that the MICU1 establishes and
controls a set point, which is crucial to maintaining
the cell’s calcium homeostasis.

Mitochondria in healthy cells rely on this mechanism
to protect from calcium overload under physiological
conditions. Disrupting this gatekeeper and the set point
and chronically elevating mitochondrial calcium could
lead to damage in neurons, and in the heart,
liver, and other organs.

Mitochondrial calcium is important for metabolic
and cardiovascular functions, and maintaining this
homeostasis is crucial. Cells lacking the set point
will lead to mitochondrial dysfunction and cell death.”


The findings suggest an array of potential therapeutic options to explore, including gene therapy, said first author Karthik Mallilankaraman, PhD, a postdoctoral fellow in the Department of Biochemistry and the Center for Translational Medicine at Temple University School of Medicine.

Other researchers contributing to the work include Patrick Doonan, Harish C. Chandramoorthy, Nicholas E. Hoffman, Rajesh Gandhirajan, and Brad Rothberg, Temple University, Cesar Cardenas, Marioly Muller, Russell Miller, Morris J. Birnbaum, Don-on Daniel Mak, University of Pennsylvania, and Jordi Molgo, Institute de Neurobiologie Alfred Fessard, Laboratoire de Neurobiolgie Cellulaire et Moleculaire, France.

The work was supported by funding from the National Institutes of Health and the American Heart Association.

About Temple Health
Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System and by Temple University School of Medicine.

Temple University Health System (TUHS) is a $1.4 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH), ranked among the “Best Hospitals” in the region by U.S. News & World Report; TUH-Episcopal Campus; TUH-Northeastern Campus; Fox Chase Cancer Center, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; and Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices. TUHS is affiliated with Temple University School of Medicine.

Temple University School of Medicine (TUSM), established in 1901, is one of the nation’s leading medical schools. Each year, the School of Medicine educates approximately 720 medical students and 140 graduate students. Based on its level of funding from the National Institutes of Health, Temple University School of Medicine is the second-highest ranked medical school in Philadelphia and the third-highest in the Commonwealth of Pennsylvania. According to U.S. News & World Report, TUSM is among the top 10 most applied-to medical schools in the nation.

Original article: http://www.templehealth.org/content/newsroom.htm?
page_id=11&minor=1&inCtx5pg=0&inCtx5news_id=341&inCtx5news=
3&site_id=1&inCtx5order_by=S:[start_date]%20desc&major=4&inCtx5view=36