Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact


Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo in 1993 as a first generation internet teaching tool consolidating human embryology teaching for first year medical students.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human.

The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

November 28, 2012--------News Archive Return to: News Alerts


“We found that mutations in ABCA3 account for about 10 percent
of respiratory disease in babies born near their due dates.”

Jennifer A. Wambach, MD






WHO Child Growth Charts

       

Gene Linked to Respiratory Distress in Babies

Some infants are more susceptible to potentially life-threatening breathing problems after birth, and rare, inherited DNA differences may explain why

by Elizabethe Holland

According to research by Washington University School of Medicine pediatrician Jennifer A. Wambach and her colleagues, they are the first to identify a single gene — ABCA3 — to be associated with a significant number of cases of respiratory distress syndrome (RDS) in babies born at or near full term.


RDS is the most common respiratory problem
in newborns and the most common lung-related
cause of death and disease among U.S.
infants less than a year old.


Their findings will be published in the December 2012 issue of Pediatrics and are available online.

The research may lead to new diagnostic and therapeutic strategies for prevention and treatment to improve respiratory outcomes for babies.

“We found that mutations in ABCA3 account for about 10 percent of respiratory disease in babies born near their due dates,” said Jennifer A. Wambach, MD, assistant professor of pediatrics and the study’s lead author. “These are babies who we typically think should have mature lungs and breathe normally. While we have known for a while that RDS is a heritable disease, this is the first gene to account for a significant proportion of disease among infants that are full-term or nearly full-term.”


RDS occurs when an infant’s lungs don’t produce
enough surfactant, a liquid that coats the inside of the
lungs and helps keep them open so the baby
can breathe. If there isn’t enough surfactant, an infant
has to work hard to breathe and may
suffer from a lack of oxygen.

Premature infants are at especially high risk of RDS,
as surfactant production increases as babies near term.
However, 2 percent to 3 percent of term and
near-term babies also develop RDS.


The researchers’ findings suggest a range of possibilities, Wambach said. These include using the genetic knowledge to plan affected infants’ births near hospitals with neonatal intensive-care units and developing medical therapies to target the abnormal protein resulting from these mutations.

Wambach said the researchers hope to identify additional genes that cause neonatal RDS and better identify babies at risk.

Wambach: “But right now we’re studying how these mutations function in the laboratory. Statistical associations help guide us, but we also need to understand the biology of these mutations.”

The research team — including Aaron Hamvas, MD, and F. Sessions Cole, MD — evaluated five genes known to be important for normal breathing immediately after birth. Hamvas is the James Keating Professor of Pediatrics and medical director of the newborn intensive care unit at St. Louis Children’s Hospital. Cole is the Park J. White, MD, Professor of Pediatrics.

The team looked at five genes involved in the metabolism of lung surfactant by taking DNA samples from more than 500 infants of African and European descent, with and without respiratory distress, who were carried to term or near term. They evaluated the same genes in an additional 48 babies with especially severe respiratory distress to see if their findings applied to that group, and in a third group of 1,066 Missouri babies, to determine the frequency of the mutations in a general population.

In comparing babies with and without respiratory distress, they found that babies of European descent with respiratory distress were more likely to have a single mutation in ABCA3, one of the five genes tested, than the infants with no breathing problems. Babies of African descent with respiratory distress also were more likely to have single ABCA3 mutations, but this difference did not reach statistical significance.


More than one-quarter of the babies with
especially severe respiratory distress had a single
mutation in ABCA3. Infants who inherit two
defective copies of the ABCA3 gene
usually require lung transplantation for survival.

However, this is the first study to show that a single
mutation in ABCA3 predisposes infants to
respiratory distress that can usually be treated
with neonatal intensive care.

The researchers also found that 1.5 percent to 3.6
percent of babies born in Missouri carry a single
ABCA3 mutation, leading the researchers to
estimate that about 10 percent of RDS cases
among term and near-term infants may be
attributable to mutations in ABCA3.


Wambach: “We picked five candidate genes and thought we would find rare mutations in all of the genes. However, we found very few mutations in the other genes, and they were not associated with RDS. Our findings were really isolated to this one gene, ABCA3.”

Wambach JA, Wegner DJ, DePass K, Heins H, Druley TE, Mitra, RD, An P, Zhang Q, Nogee LM, Cole FS, Hamvas A. Single ABCA3 Mutations and Risk for Neonatal Respiratory Distress Syndrome. Pediatrics vol. 130 (6), December 2012

Funding for this research was received from the National Institutes of Health (NIH). Support also comes from the Eudowood Foundation, the Children’s Discovery Institute, the Saigh Foundation, and Kailos Genetics. NIH grant numbers are R01 HL065174, R01 HL082747, K12 HL089968, K08 HL105891, R01 HL054703, K08 CA140720-01A1.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Original article: https://news.wustl.edu/news/Pages/24612.aspx