Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
33333333333333333333333
Google Search artcles published since 2007
 
June 17, 2011--------News Archive

Postnatal Depression Linked to Depression in Child
The effects of maternal depression on the likelihood of the child to develop depression may begin as early as infancy.

First Diagnostic Test for Hereditary Child's Disease
A breakthrough in genetic research has uncovered the defect behind a rare hereditary child’s disease that inhibits the body’s ability to break down vitamin D.

Walking, Sex, Spicy Food Favored to Bring On Labor
Near the end of pregnancy, some women take it upon themselves to try to induce labor, mostly by walking, having sex, eating spicy food or stimulating their nipples.


June 16, 2011--------News Archive

Effects of Premature Birth Can Reach Into Adulthood
Premature infants are less healthy, have more social and school struggles and face a greater risk of heart-health problems in adulthood.

Mouse Genetics Are A Resource For Human Genetics
Mouse gene knockouts will empower mammalian gene studies for a generation.


June 15, 2011--------News Archive

Taming the Molecule's Dr. Jekyll and Mr. Hyde
Two forms of a molecule are called enantiomers and can have radically different properties in biology. Thalidomide is a good example of how different forms of the same molecule can have disastrous consequences.

Fear Activates Young, Immature Infant Brain Cells
Fear burns memories into our brain, and new research by University of California, Berkeley, neuroscientists explains how.


June 14, 2011--------News Archive

Malnourishment - Pregnant or Lactating - Key to Diseases in Children
Study in primates establishes critical role that undernourishment in mothers-to-be and lactating females has in creating type 2 diabetes in offspring.

We Are All Mutants
The first whole-genome measure of human mutation predicts 60 new mutations exist within each of us at birth.

Canadian Women On Technology Used in Childbirth
This generation's choice of C-section does not reflect knowledge of the procedure's complications to mother and child.


June 13, 2011--------News Archive

Cell Division Linked to Oxygen Levels
Johns Hopkins reports that the MCM proteins, which promote cell division, also directly control the oxygen-sensing HIF-1 protein which controls cell division.

Many Genetic Keys Needed to Unlock Autism
Hundreds of small genetic variations are associated with autism spectrum disorders, including an area of DNA that may be key to understanding why humans are social animals.

Children Eschew the Fat - If Dad Says So
Dad's choice of where to eat could literally tip the scales on his children's health.

Mom's B Vitamins Lower Child's Colorectal Cancer
Mice born to mothers who are fed a diet supplemented with B vitamins are less likely to develop intestinal tumors

WHO Child Growth Charts

An international consortium of researchers report in Nature that they have knocked out almost 40 per cent of the genes in the mouse genome. This completed resource will empower studies of gene activity for models of human disease.

The results are founded in a novel, efficient production line targeting each specific gene. The consortium of scientists have cracked all the challenges of generating mutations of each gene in mouse embryonic stem cells, and has already knocked out 9,000 genes in the mouse genome as part of an international effort to knockout all 21,000.

This developing resource will be essential in our understanding of the role of genes in all mammals - including humans.

The cells generated by this approach will allow researchers to ask and answer questions about the roles of genes at the scale of the whole mouse and human genome.

The gold-standard method to uncover that role is to mutate a gene in mouse embryonic stem cells: the biochemical and developmental behaviour of the mutated cells can be studied in test tubes or in living mice. Until this production system was developed, conducting gold-standard research of this scale was impossible.

The problem to be overcome was: how do you scale this approach to tackle the whole mouse genome?

"We have pioneered novel methods that enable us to deliver the most complex and accurate high-throughput functional genomics platform yet attempted," says Dr Bill Skarnes, Wellcome Trust Sanger Institute researcher and lead author of the study. "We believe that our work raises the standards of achievement and expectation for genome-scale programmes.

"It is an investment for the future: the genome-engineering technologies developed here for the mouse will drive future model systems, including work on human stem cells."

Genomics was transformed in the 1990s from individual-based research to large-scale commodity research: an equivalent success was needed for mouse mutagenesis - to provide money efficiently and consistently and to release it freely.

Previously attempted strategies to develop mouse models on a large scale suffered the twin disadvantages of not producing precise genetic changes and favouring only the genes that were active during the experiment, leaving the remainder unaltered.

The present work solves these problems. The team exploited a system called homologous recombination within mouse embryonic stem cells, which can deliver very precise alteration of any gene in the genome. It is founded on choosing the correct recombinant DNA molecules (vectors) to target genes efficiently.

However, some genes are essential to life of the cell or organism: disruption of these might cause the cell to die and so the mutation would be 'lost' from the project. Crucially, to ensure that all genes can be disrupted, the team developed DNA vectors that create a mutation only when manipulated: gene targeted by the mutation can be identified, and the mutation activated only when it is to be studied.

But in the essential step to realize its ambition of being a comprehensive, freely available resource, the team designed and delivered a 'pipeline' that systematically designs and constructs vectors, and efficiently introduces the engineered DNA molecules into the mouse embryonic stem cell line developed specifically for these projects.

Finally, by employing a modular approach to the vector design, a number of other valuable resources are created as part of the generation of targeted ES cells. The consortium produced vectors for more than half of the genes in the mouse genome. All of these are being made available to the mouse research community through the consortium's web portal at http://www.knockoutmouse.org

"We are producing mutations in embryonic stem cells with greater efficiency and speed than we predicted and at well above the historical average," says Allan Bradley, senior author of the study and Director Emeritus of the Wellcome Trust Sanger Institute.

"We have taken careful steps to ensure we deliver quality resources of maximum utility that will stand the test of time. Indeed, we expect our systems will be increasingly adopted by researchers using human and other cells to seek advances in the understanding of disease."

The methods the team has developed will also accelerate studies on human stem cells - cells that have the potential to grow into many different types of adult tissue.

Research into producing such induced pluripotent stem (iPS) cells from adult tissues (eliminating the need for embryonic stem cells) is expected to be vital in understanding human disease and therapies. The systems developed for mouse stem cells are transferable to human cells and could drive research into mutation in the human genome and its biological and medical consequences.

"Biomedical research needs biological resources on a scale that match genomics resources," explains Colin Fletcher, Ph.D., Program Director of the Knock Out Mouse Program at the National Institutes of Health, a part of the international knockout effort.

"Such knockout resources are the foundation for producing thousands of valuable mouse mutants for future large-scale international phenotyping programmes and will serve the biological and biomedical research community worldwide."