Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact


Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo in 1993 as a first generation internet teaching tool consolidating human embryology teaching for first year medical students.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human.

The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

December 3, 2012--------News Archive Return to: News Alerts


High resolution image of the fibers trapping sperm.

image credit: Kim Woodrow, UW



Fibers stick to a hard surface (top) and then can be removed
to create a hollow ring (bottom left).
Bottom right shows a closeup of the tiny fibers.




WHO Child Growth Charts

       

Electrically Spun Fabric Offers Dual Defense Against Pregnancy, HIV

The only way to protect against HIV and unintended pregnancy today is the condom. It’s an effective technology, but not appropriate or popular in all situations

by Hannah Hickey

A University of Washington team has developed a versatile platform to simultaneously offer contraception and prevent HIV. Electrically spun cloth with nanometer-sized fibers can dissolve to release drugs, providing a platform for cheap, discrete and reversible protection.

The electrospun fibers can release chemicals or they can physically block sperm, as shown here.

The research was published this week in the Public Library of Science’s open-access journal PLoS One. The Bill & Melinda Gates Foundation last month awarded the UW researchers almost $1 million to pursue the technology.

“Our dream is to create a product women can use to protect themselves from HIV infection and unintended pregnancy,” said corresponding author Kim Woodrow, a UW assistant professor of bioengineering. “We have the drugs to do that. It’s really about delivering them in a way that makes them more potent, and allows a woman to want to use it.”


Electrospinning uses an electric field to catapult
a charged fluid jet through air to create very fine,
nanometer-scale fibers. The fibers can b
e manipulated to control the material’s
solubility, strength and even geometry.

Because of this versatility, fibers may be better at
delivering medicine than existing technologies
such as gels, tablets or pills.

No high temperatures are involved,
so the method is suitable for
heat-sensitive molecules.

The fabric can also incorporate large molecules,
such as proteins and antibodies, that are hard
to deliver through other methods.


At a lab meeting last year, Woodrow presented the concept, and co-authors Emily Krogstad and Cameron Ball, both first-year graduate students, pursued the idea.

They first dissolved polymers approved by the Food and Drug Administration and antiretroviral drugs used to treat HIV to create a gooey solution that passes through a syringe. As the stream encounters the electric field it stretches to create thin fibers measuring 100 to several thousand nanometers that whip through the air and eventually stick to a collecting plate (one nanometer is about one 25-millionth of an inch). The final material is a stretchy fabric that can physically block sperm or release chemical contraceptives and antivirals.

Ball: “This method allows controlled release of multiple compounds. We were able to tune the fibers to have different release properties.”

One of the fabrics they made dissolves within minutes, potentially offering users immediate, discrete protection against unwanted pregnancy and sexually transmitted diseases.

Another dissolves gradually over a few days, providing an option for sustained delivery, more like the birth-control pill, to provide contraception and guard against HIV.


The fabric could incorporate many fibers to guard
against many different sexually transmitted infections,
or include more than one anti-HIV drug to protect
against drug-resistant strains (and discourage
drug-resistant strains from emerging).

Mixed fibers could be designed to release
drugs at different times to increase their potency,
like the prime-boost method used in vaccines.

The electrospun cloth could be inserted directly
into the body or be used as a coating on
vaginal rings or other products.

Electrospinning has existed for decades,
but it’s only recently been automated
to make it practical for applications
such as filtration and tissue engineering.
This is the first study to use nanofibers
for vaginal drug delivery.

While this technology is more discrete than a condom,
and potentially more versatile than pills or plastic
or rubber devices, researchers say there is
no single right answer.


Krogstad: “At the time of sex, are people going to actually use it? That’s where having multiple options really comes into play. Depending on cultural background and personal preferences, certain populations may differ in terms of what form of technology makes the most sense for them.”

The team is focusing on places like Africa where HIV is most common, but the technology could be used in the U.S. or other countries to offer birth control while also preventing one or more sexually transmitted diseases.

The research to date was funded by the National Institutes of Health and the UW’s Center for AIDS Research. The other co-author on the paper is Thanyanan Chaowanachan, a UW postdoctoral researcher and longtime HIV expert.

The team will use the new Gates Foundation grant to evaluate the versatility and feasibility of their system. The group will hire more research staff and buy an electrospinning machine to make butcher-paper sized sheets. The expanded team will spend a year testing combinations that deliver two antiretroviral drugs used to treat HIV and a hormonal contraceptive, and then six months scaling up production of the most promising materials.

Original article: http://www.washington.edu/news/2012/11/30/electrically-spun-fabric-offers-dual-defense-against-pregnancy-hiv/