Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact


Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo in 1993 as a first generation internet teaching tool consolidating human embryology teaching for first year medical students.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human.

The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

December 10, 2012--------News Archive Return to: News Alerts


Emily Whitehead is in complete remission from ALL.








WHO Child Growth Charts

       

Engineered Immune Cells Produce Complete Response in Aggressive Pediatric Leukemia

Oncologist achieves potent anticancer effect with engineered T cell therapy on first use in children

By reprogramming a 7-year-old girl's own immune cells to attack an aggressive form of childhood leukemia, a pediatric oncologist at Children's Hospital of Philadelphia (CHOP), has achieved a complete response in his patient, who faced grim prospects when she relapsed after conventional treatment.


The innovative experimental therapy used
bioengineered T cells, custom-designed to
multiply rapidly in the patient, and then
destroy leukemia cells. After the treatment,
the child's doctors found that she had
no evidence of cancer.


Pediatric oncologist Stephan A. Grupp, M.D., Ph.D., of The Children's Hospital of Philadelphia, and colleagues from the University of Pennsylvania presented updated results of the clinical trial involving these engineered cells at the American Society of Hematology (ASH) annual meeting today in Atlanta. Grupp is the director of Translational Research for the Center for Childhood Cancer Research at The Children's Hospital of Philadelphia, and a professor of Pediatrics at the Perelman School of Medicine at the University of Pennsylvania.

Grupp's research builds on his ongoing collaboration with Penn scientists who originally developed the modified T cells as a treatment for B-cell leukemias. The Penn team reported on early results of a trial using this cell therapy in adult chronic lymphocytic leukemia (CLL) patients in August of 2011. Carl H. June, M.D., of the Perelman School of Medicine at the University of Pennsylvania, leads this research group, which along with Grupp's work, is presenting new data at the ASH meeting showing that nine of 12 patients with advanced leukemias in the clinical trial, including two children, responded to treatment with CTL019 cells.

One of the nine responding patients is the 7-year-old with acute lymphoblastic leukemia (ALL). Grupp and Penn colleagues adapted the treatment to combat ALL, the most common childhood leukemia, and also the most common childhood cancer. Although physicians can cure roughly 85 percent of ALL cases, the remaining 15 percent of such cases stubbornly resist treatment.

The CTL019 therapy, formerly called CART19, represents a new approach in cancer treatment. T cells are the workhorses of the immune system, recognizing and attacking invading disease cells. However, cancer cells fly under the radar of immune surveillance, evading detection by T cells. CAR T cells (chimeric antigen receptor T cells) are engineered to specifically target B cells, which become cancerous in certain leukemias, such as ALL and CLL, as well as types of lymphoma, another cancer of the immune cells.


CD19 is a protein found only on the surface
of B cells. By creating an antibody that recognizes
CD19, and physically connecting that antibody to
T cells, the researchers have created a guided missile
that locks in on and kills B cells, thereby attacking
B-cell leukemia.


In using the CTL019 treatment in his pediatric patient, Grupp found that the very activity that destroyed leukemia cells also stimulated a highly activated immune response called a cytokine release syndrome. The child became very ill and had to be admitted to the intensive care unit.

Grupp and his team decided to counteract these toxic side effects by using 2 immunomodulating drugs that blunted the overactive immune response and rapidly relieved the child's treatment-related symptoms. These results were effective enough that this approach is now being successfully incorporated into CTL019 treatments for adults as well.

The immunomodulating drugs did not interfere with the CTL019 therapy's anti-leukemia benefits, which have persisted 6 months after the infusion of cell therapy. This persistence is essential, because the engineered T cells remain in the patient's body to protect against a recurrence of the cancer.


"These engineered T cells have proven to be active
in B cell leukemia in adults. We are excited to see
that the CTL019 approach may be effective in
untreatable cases of pediatric ALL as well.

Our hope is that these results will lead to
widely available treatments for high-risk B cell
leukemia and lymphoma, and perhaps
other cancers in the future."

Stephan A. Grupp, M.D., Ph.D.
The Children's Hospital of Philadelphia


"This type of pioneering research addresses the importance of timing when considering experimental therapies for relapsed patients," added Susan R. Rheingold, M.D., one of the leaders in the Children's Hospital program for children with relapsed leukemia. "To ensure newly relapsed patients with refractory leukemia meet criteria for options like CTL019, we must begin exploring these innovative approaches earlier than ever before. Having the conversation with families earlier provides them more treatment options to offer the best possible outcome."

In August 2012, Novartis acquired exclusive rights from Penn to CART-19, the therapy that was the subject of this clinical trial and which is now known as CTL019.

"CD19-Redirected Chimeric Antigen Receptor T (CART19) Cells Induce a Cytokine Release Syndrome (CRS) and Induction of Treatable Macrophage Activation Syndrome (MAS) That Can Be Managed by the IL-6 Antagonist Tocilizumab (toc)"

Abstract #2604 presented, Sun., Dec. 9, 2012, 6 p.m. ET; Hall B1-B2, Level 1, Building B

About the Cancer Center at The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia cares for more children with cancer than any other general pediatric hospital in the United States. Its large basic and clinical research programs are particularly strong in pediatric neuro-oncology, neuroblastoma, leukemia and lymphoma, and sarcomas. Of all pediatric institutions, Children's Hospital enrolls the most patients in national clinical trials, working in close collaboration with national organizations such as the Children's Oncology Group. Physicians at Children's Hospital have had pioneering roles in developing international standards for diagnosing and treating neuroblastoma, and in developing programs for survivors of childhood cancer.

Original article: http://www.chop.edu/service/oncology/pediatric-cancer-research/t-cell-therapy.html