Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact


Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo in 1993 as a first generation internet teaching tool consolidating human embryology teaching for first year medical students.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human.

The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

December 12, 2012--------News Archive Return to: News Alerts


An important switchboard between the brain and the body's hormonal system,
the hypothalamus (red) is where the KNDy neurons -
the potential triggers of hot flushes - reside.


(Image: Life Science Databases (LSDB), Japan, Creative Commons License)






WHO Child Growth Charts

       

What Causes Hot Flushes During Menopause?

Hot flushes are not 'in the head,' but new research suggests they may start there; a region in the brain has been identified that may trigger the uncomfortable surges of heat most women experience in the first few years of menopause

Hot flushes affect millions of people, and not just women. Yet, it is still unclear what causes the episodes of temperature discomfort, often accompanied by profuse sweating.

Now, Dr. Naomi Rance, a professor in the department of pathology at the UA College of Medicine, and a team of researchers have come closer to understanding the mechanism of hot flushes, a necessary step for potential treatment options down the road. The research results were published recently in the Proceedings of the National Academy of Sciences.


The team identified a group of brain cells known as
KNDy neurons, as a likely control switch of hot flushes.

KNDy neurons (pronounced "candy") are located in
the hypothalamus, a portion of the brain controlling
vital functions that also serves as the switchboard
between the central nervous system
and hormone signals.


"Although the KNDy neurons are a very small population of cells, our research reveals that they play extremely important roles in how the body controls its energy resources, reproduction and temperature," said Melinda Mittelman-Smith, who led the study as part of her doctoral thesis. "They are true multitaskers."

By studying KNDy neurons in rats, the research team created an animal model of menopause to elucidate the biological mechanisms of temperature control in response to withdrawal of the hormone estrogen, the main trigger of the changes that go along with menopause.

They discovered that tail skin temperature was consistently lower in rats whose KNDy neurons were inactivated, suggesting the neurons control a process known as vasodilation, or widening of the blood vessels to increase blood flow through the skin.

"The hallmark of hot flushes is vasodilation," explained Rance, who also is a neuropathologist at The University of Arizona Medical Center. "When you flush, your skin gets hot and you can see the redness of the skin. It is an attempt of the body to get rid of heat, just like sweating. Except that if you were to measure core temperature at that point, you would find it is not even elevated."

Although the results are not yet directly applicable in helping individuals affected by hot flushes, they mark a necessary first step, Rance said.

"Obviously we can't do these studies in women, and only if we understand the mechanism is there a chance of developing therapies. All that is known so far is that dwindling estrogen levels have something to do with it but anything after that is a black box."

"Right now the only effective way of treating flushes is estrogen-replacement therapy. If we could figure out what is causing those flushes, we could try to develop a better, more targeted therapy."

Rance said hot flushes usually last for four or five years and occur in up to 80 percent of women but also in men undergoing certain hormone treatments for prostate cancer.

"For some people it's not too bad, but it can be very severe in other individuals; they loose sleep et cetera. So the question I have been asking myself is, 'How come we haven't figured this out?'"

Together with her coworkers, Rance has studied KNDy neurons and their functions for two decades.


"KNDy neurons respond to circulating estrogens.

When these hormones are at very low levels, as is
the case in menopause, these neurons go haywire
if you will. They grow very large and manufacture
several times more neurotransmitter than they
did with estrogens present."

"Because the neurons talk to known thermo–
regulatory centers of the brain, we think this
increased signaling activity may inappropriately
tell the body, 'I'm hot, release heat.' This triggers
heat loss mechanisms like sweating and
opening up of blood vessels in the skin."

Melinda Mittelman-Smith


Analogous to women going through menopause, the tail skin temperature goes up in rats after removal of the ovaries, where estrogen is produced.

"Rats regulate heat dissipation with their tail because the rest is covered by fur," Rance explained. "In rats without ovaries, the lack of estrogen causes vasodilation, which we can measure as increased tail skin temperature."

"Once we knew that estrogen really does control tail skin temperature in a rat, we wanted to know what role, if any, the KNDy neurons play in this."

When Rance and her team compared the tail skin temperatures of rats with intact KNDy neurons to those with inactivated KNDy neurons, they discovered that while tail skin temperatures still followed the same ups and downs over the course of the day and night cycle, they were lower in the absence of KNDy activity.

Rance: "They have lower levels of vasodilation. It is very consistent. Their tail skin temperature is lower than rats with normal KNDy neurons and stays low. It doesn't matter if they have estrogen or not; it doesn't matter if it's night or if it's day."

"The rats didn't seem unhappy at all," she added. "You'd think they'd be curling up and shivering, but no. There was no difference in the core temperature, so they weren't internally cold. We did all the activity measurements and found them to be completely normal. We couldn't tell a difference other than lower vasodilatation."

Rance said she is not surprised that the same neuronal switches that are important for reproduction also control thermoregulation.

"Being able to regulate body temperature is very important for the species and also for reproduction because it is important for a pregnant woman to avoid extreme hyperthermia. Hot flushes are a symptom of hyperactivity of these neurons."

The researchers caution that while KNDy neurons are critical for normal thermoregulation, they are by no means the sole center for managing body temperature.

"These animals would be in much more trouble if that were the case," Mittelman-Smith said. "In fact, I don't view KNDy neurons as a thermoregulatory center at all, but rather a group of cells that has the ability to influence thermoregulatory centers."

Rance added: "I wouldn't say we solved the problem, but we have a good clue about what could be causing the flushes."

The other members of the research team and authors of the study are: Hemalini Williams, a master's student in the UA's physiology program; Sally Krajewski-Hall, a research associate in Rance's lab; and Nathaniel McMullen, a professor emeritus in the UA's department of cellular and molecular medicine.

This work was supported by National Institutes of Health, National Institute on Aging Grant R01 AG032315.

Original article: http://uanews.org/story/what-causes-hot-flushes-during-menopause