Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact


Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo in 1993 as a first generation internet teaching tool consolidating human embryology teaching for first year medical students.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human.

The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

December 17, 2012--------News Archive Return to: News Alerts







WHO Child Growth Charts

       

What Mechanism Generates Our Fingers and Toes?

Genetic studies confirm a mathematical model

Dr. Marie Kmita and her research team at the IRCM contributed to a multidisciplinary research project that identified the mechanism responsible for generating our fingers and toes, and revealed the importance of gene regulation in the transition of fins to limbs during evolution.

Their scientific breakthrough is published today in the prestigious journal Science.

By combining genetic studies with mathematical modeling, the scientists provided experimental evidence supporting a theoretical model for pattern formation known as the Turing mechanism.


In 1952, mathematician Alan Turing proposed
mathematical equations for pattern formation,
which describes how two uniformly-distributed
substances, an activator and a repressor,
trigger the formation of complex shapes and
structures from initially-equivalent cells.

“The Turing model for pattern formation has long
remained under debate, mostly due to the lack of
experimental data supporting it
. By studying the
role of Hox genes during limb development, we
were able to show, for the first time, that the
patterning process that generates our fingers
and toes relies on a Turing-like mechanism.”


Dr. Rushikesh Sheth
postdoctoral fellow, Dr. Kmita’s laboratory
co-first author of the study

In humans, as in other mammals,
an embryo’s development is controlled,
in part, by “architect” genes called Hox genes.

These genes are essential to the proper positioning
of the body’s architecture, and define the nature and
function of cells that form organs and skeletal elements.


“Our genetic study suggested that Hox genes act as modulators of a Turing-like mechanism, which was further supported by mathematical tests performed by our collaborators, Dr. James Sharpe and his team,” adds Dr. Marie Kmita, Director of the Genetics and Development research unit at the IRCM.


“Moreover, we showed that drastically reducing
the dose of Hox genes in mice transforms fingers
into structures reminiscent of the extremities of fish fins.

These findings further support the key role of
Hox genes in the transition of fins to limbs during
evolution, one of the most important anatomical
innovations associated with the transition from
aquatic to terrestrial life.”


Dr. Marie Kmita
Director of the Genetics and Development research
IRCM


About the research project
The study published in Science was a collaborative project between the teams supervised by Drs. Marie Kmita (IRCM), James Sharpe (CRG Barcelona, Spain) and Maria A. Ros (University of Cantabria, Spain). The research conducted at the IRCM was funded by the Canadian Institutes of Health Research and the Canada Research Chairs Program. The article’s second first author Is Luciano Marcon from the European Molecular Biology Laboratory (EMBL) and the Pompeu Fabra University in Spain.

For more information on this scientific breakthrough, please refer to the article summary published online by Science: http://www.sciencemag.org/content/338/6113/1476.

About Dr. Marie Kmita
Marie Kmita obtained a PhD in cell and molecular biology from the Université de Reims in France. She is an Associate IRCM Research Professor and Director of the Genetics and Development research unit. Dr. Kmita is also Assistant Professor-Researcher in the Department of Medicine (accreditation in molecular biology) at the Université de Montréal, and Adjunct Professor in the Department of Medicine (Division of Experimental Medicine) and the Department of Biology at McGill University. Dr. Kmita holds the Canada Research Chair in Molecular Embryology and Genetics. For more information, visit www.ircm.qc.ca/kmita.

About the IRCM
Founded in 1967, the Institut de recherches cliniques de Montréal (IRCM) (www.ircm.qc.ca) is currently comprised of 37 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, eight core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l’Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

About the Canadian Institutes of Health Research (CIHR)
CIHR is the Government of Canada's health research investment agency. CIHR's mission is to create new scientific knowledge and enable its translation into better health, more effective health services and products, and a stronger Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 14,100 health researchers and trainees across Canada.

Original article: http://www.ircm.qc.ca/Medias/Communiques/Pages/detail.aspx?pID=72