Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact


Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo in 1993 as a first generation internet teaching tool consolidating human embryology teaching for first year medical students.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human.

The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

December 17, 2012--------News Archive Return to: News Alerts


Video: A new form of cell division, klerokinesis, causes a cell to divide into two daughter cells. Klerokinesis differs from the normal cell division, called cytokinesis.

The discovery may lead to techniques to prevent some cancers from developing.







WHO Child Growth Charts

       

New Form of Cell Division Found

Researchers at the University of Wisconsin Carbone Cancer Center have discovered a new form of cell division in human cellsT, which they believe serves as a back-up mechanism for faulty cell division, preventing some cells from going down a path that can lead to cancer

"If we could promote this new form of cell division, which we call klerokinesis, we may be able to prevent some cancers from developing," says lead researcher Dr. Mark Burkard, an assistant professor of hematology-oncology in the Department of Medicine at the UW School of Medicine and Public Health.

The group has dubbed the new type of division klerokinesis to distinguish it from cytokinesis. Burkard enlisted the help of Dr. William Brockliss, UW assistant professor of classics, to come up with the name; klero is a Greek prefix meaning "allotted inheritance."

Mark Burkard presented the finding on Dec. 17 at the annual meeting of the American Society for Cell Biology in San Francisco.

A physician-investigator who sees breast cancer patients, Burkard studies cancers in which cells contain too many chromosomes, a condition called polyploidy.


About 14 percent of breast cancers and 35 percent
of pancreatic cancers have three or more sets of
chromosomes, instead of the usual two sets.

Many other cancers have cells containing defective
chromosomes rather than too many or too few.


"Our goal in the laboratory has been to find ways to develop new treatment strategies for breast cancers with too many chromosome sets," he says. The original goal of the current study was to make human cells that have extra chromosomes sets. But after following the accepted recipe, they unexpectedly observed the new form of cell division.

Until now, Burkard and most cell biologists today accepted a century-old hypothesis developed by German biologist Theodor Boveri, who studied sea urchin eggs. Boveri surmised that faulty cell division led to cells with abnormal chromosome sets, and then to the unchecked cell growth that defines cancer. With accumulated evidence over the years, most scientists have come to accept the hypothesis.


Normal cell division is at the heart of an
organism's ability to grow from a single
fertilized egg into a fully developed individual.

More than a million-million rounds of division
must take place for this to occur. In each division,
one mother cell becomes two daughter cells.

Even in a fully grown adult, many kinds of
cells are routinely remade through cell division.


The fundamental process of cells copying themselves begins with a synthesis phase, when a duplicate copy is made of cell components, including the chromosomes made up of DNA, within the nucleus.

Then during mitosis, the two sets are physically pulled apart in opposite directions, while still being contained in one cell. Finally, during cytokinesis, the one cell is cut into two daughter cells, right at the end of mitosis.

Burkard and his team were making cells with too many chromosomes--to mimic cancer. The scientists blocked cytokinesis with a chemical and waited to see what happened.

"We expected to recover a number of cells with abnormal sets of chromosomes," Burkard explains.

The researchers found that, rather than appearing abnormal, daughter cells ended up looking normal most of the time. Contrary to Boveri's hypothesis, abnormal cell division rarely had long-term negative effects in human cells.

So the group decided to see how the human cells recovered normal sets of chromosomes by watching with a microscope that had the ability to take video images.


"We started with two nuclei in one cell,
To our great surprise, we saw the cell
pop apart into two cells without
going through mitosis."

Dr. Mark Burkard
assistant professor of hematology-oncology
Department of Medicine, UW School of Medicine and Public Health


Each of the two new cells inherited an intact nucleus enveloping a complete set of chromosomes. The splitting occurred, unpredictably, during a delayed growth phase rather than at the end of mitosis.

The scientists did a number of additional experiments to carefully make sure that the division they observed was different than cytokinesis.

"We had a hard time convincing ourselves because this type of division does not appear in any textbook," Burkard says.

Over time, they found that only 90 percent of daughter cells had recovered a normal complement of chromosomes. Burkard would like to leverage that statistic up to 99 percent.


"If we could push the cell toward this new type of
division, we might be able to keep cells normal
and lower the incidence of cancer."

Dr. Mark Burkard


Burkard now thinks that among all those rounds of cell division an organism goes through, every once in a while cytokinesis can fail. And that this new division is a back-up mechanism that allows cells to recover from the breakdown and grow normally.

Collaborators on the project include Dr. Beth Weaver, UW assistant professor of cell and regenerative biology; Dr. Alka Choudhary; Robert Lera; Dr. Melissa Martowicz and Dr. Jennifer Laffin.

To see a movie, go to: http://med.wisc.edu/files/smph/docs/for_media/movie_rpe_klerokinesis.mov.

Original article: http://www.news.wisc.edu/21364