Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact


Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo in 1993 as a first generation internet teaching tool consolidating human embryology teaching for first year medical students.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human.

The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

December 21, 2012--------News Archive Return to: News Alerts


The
AAV type 2 treatment has been used for gene therapy vector trials
in cystic fibrosis, hemophilia, Parkinson's diseases, and retinal disorders.







WHO Child Growth Charts

       

Gene Therapy Shows Promise for Canavan Disease

Results of a clinical trial that began in 2001 show that a gene therapy cocktail conveyed into the brain by a molecular special delivery vehicle may help extend the lives of children with Canavan disease, a rare and fatal neurodegenerative disorder

A report of the trial appears in the Dec. 19, 2012 online edition of the journal Science Translational Medicine.

The treatment uses a virus (adeno-associated virus, or AAV) as a "viral vector" meticulously tailored to enter the brain and safely switch good genes for bad.

This form of gene therapy was created and developed at the University of North Carolina School of Medicine. The work was spearheaded by R. Jude Samulski, PhD, professor of pharmacology and director of UNC's Gene Therapy Center, and study senior author.

"This was the first AAV-based gene therapy produced by a U.S. academic institution to be approved for neurological use by the FDA," Samulski said. "It's also the first vector produced by the university's Gene Therapy Center Vector Core facility to go into patients."


Children with Canavan disease have mutations in
the ASPA gene that normally codes for an enzyme
that helps the brain degrade N-acetyl-aspartate (NAA).

The unregulated buildup of NAA is toxic to the brain's
gray matter, which is the protective myelin sheath
surrounding nerve cells.

As the myelin deteriorates, neurons become unable
to communicate, and the child's head size increases
(macrocephaly). Movement problems begin, an
inability to crawl, seizures, impaired vision, and
children often die within three years of age.

Fewer than 1,000 children in the U.S.
have the disorder.


Samulski arrived at UNC in 1993 to establish the UNC Gene Therapy Center. He has long pioneered methodologies for using viruses to deliver genes effectively and safely to various targets in the body, including the brain, lungs, liver, heart, and muscle.

As a graduate student at the University of Florida in the early 1980s, his thesis project was understanding and developing AAV as a vector for delivering therapeutic genes which has help launch this new field of molecular medicine. This work eventually led to development of AAV type 2, which has been used for gene therapy vector trials in cystic fibrosis, hemophilia, Parkinson's diseases, retinal disorders.

His work has proceeded into several other settings, including the first gene therapy clinical trial for muscular dystrophy in the U.S developed by Dr. Samulski and his first graduate student, Dr. Xiao Xiao, professor in the UNC Eshelman School of Pharmacy.

In this Canavan disease phase 1/2 safety study, 13 children were treated at the Cell and Gene Therapy Center at the University of Medicine and Dentistry of New Jersey (UMDNJ) in Stratford, N.J. Principal Investigator and first author of the study is Paola Leone, PhD, associate professor of cell biology at UMDNJ. The children were treated in 2001, 2003 and 2005, corresponding to AAV vector production runs. Their ages at the time of treatment ranged from four to 83 months.

Working with Samulski's UNC lab colleagues, Leone's neurosurgical team used MRI imaging to guide them to the proper location and depth in the lateral ventricle of the brain for inserting six very thin catheters via small holes drilled in the skull.

The team then pumped in a solution carrying the vector package containing the replacement ASPA gene. This amounted to about 900 billion genomic particles of replacement gene held by the AAV vector – roughly the size of a quarter – that were pumped into each of the six catheter sites. The catheters were then removed.


Following treatment, patients went home with their
families and were tracked through behavioral tasks
and brain imaging studies.

Investigators found that the gene therapy was safe
and had led to a decrease in NAA in the brain,
together with decreased seizure frequency and
"clinical stabilization," the greatest observed in the
youngest patients – those treated before
2 years of age.

These include improvements in attention, sleep,
and greater degree of movement improvements
when lying down and rolling.


"As the trial continued, the FDA let us go to younger and younger patients," Samulski said. "We were successful in being able to treat a 3-months-old infant who was diagnosed in utero … and that child is alive today and is the youngest person who has ever been treated with gene therapy."

The UNC scientist views the study a definite success from the safety perspective. "The genetic information put into the brains of individuals has not caused adverse effects, toxicity, or cancer. It also has great potential efficacy for treating other degenerative neurological disorders, including Parkinson's and Alzheimer's diseases."

Co-authors along with Samulski at UNC and Leone at UMDNJ were from six academic and clinical sites the U.S. and New Zealand: Children's Hospital of Philadelphia, New York University School of Medicine, Cooper Neurological Institute in Camden, N.J., the University of Minnesota Medical School in Minneapolis, the University of Auckland in Auckland, New Zealand, Ohio State University in Columbus, Ohio, and from Asklepios Biopharmaceuticals in Chapel Hill, N.C.

Funds in support for the research came from the National Institute of Neurological Disorders and Stroke (NINDS), Canavan Research Foundation, Jacob's Cure Foundation, and the National Endowment for Alzheimer's Research.

Original article: http://news.unchealthcare.org/news/2012/december/gene-therapy-cocktail-shows-promise-in-long-term-clinical-trial-for-rare-fatal-brain-disorder