Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact


Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo in 1993 as a first generation internet teaching tool consolidating human embryology teaching for first year medical students.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human.

The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

March 4, 2013--------News Archive Return to: News Alerts


The findings suggest a way in which maternal-stress exposure could be linked to neurodevelopmental diseases such as autism and schizophrenia,
which affect males more frequently or more severely than females.










WHO Child Growth Charts

       

Placenta Reflects Mom's Exposure to Stress

According to a new study by a research group from the University of Pennsylvania School of Veterinary Medicine, if a mother is exposed to stress during pregnancy, her placenta translates that experience to her fetus by altering levels of a protein that affects the developing brains of male and female offspring differently

The mammalian placenta is more than just a filter through which nutrition and oxygen are passed from a mother to her unborn child.

These findings suggest one way in which maternal-stress exposure may be linked to neurodevelopmental diseases such as schizophrenia and autism, which affect males more frequently or more severely than females.


"Most everything experienced by a woman during a pregnancy
has to interact with the placenta in order to transmit to
the fetus.
Now we have a marker that appears to signal
to the fetus that its mother has experienced stress."

Tracy L. Bale,
senior author on the paper
Associate Professor, Department of Animal Biology
Pennsylvania School of Veteromary Medicine


Bale also holds an appointment in the Department of Psychiatry in Penn's Perelman School of Medicine. Her coauthors include lead author and postdoctoral researcher Christopher L. Howerton, graduate student Christopher Morgan and former technician David B. Fischer, all of Penn Vet.

Published in the Proceedings of the National Academy of Sciences, the study builds on previous work by Bale and her colleagues which found that female mice exposed to stress during pregnancy gave birth to males who had heightened reactions to stress. Further research showed that the effect extended to the second generation: The sons of those male mice also had abnormal stress reactions.


Meanwhile, human studies conducted by other researchers
have shown that males born to women who experience stress
in the first trimester of pregnancy are at an increased risk
of developing schizophrenia.


The Penn team hoped to find a biomarker that could account for these changes and risk factors. To be an effective signal of maternal stress, the researchers reasoned, a biomarker would need to show differences in expression between male and female offspring and would need to be different between stressed and unstressed mothers. They also wanted to find a marker that behaved similarly in humans.

They went about their search by first exposing a group of female mice to mild stresses, such as fox odor or unfamiliar noises, during the first week of their pregnancies, a time period equivalent to the first trimester of a human pregnancy. Another group of pregnant mice was unexposed.

In a genome-wide screen of the female's placentas, one gene stood out as meeting the researchers' criteria: Ogt, an X-linked gene that codes for the enzyme O-linked-N-acetylglucosamine transferase (OGT). Placentas from male offspring had lower levels of OGT than those from female offspring, and all placentas from stressed mothers had lower levels than placentas from their unstressed counterparts.

To determine how placental exposure to reduced levels of OGT might differentially affect the brains of male and female offspring, Bale's team developed a mouse in which they could genetically control OGT's expression. Comparing females with normal levels of placental OGT to females that had been manipulated to have half as much, the researchers observed changes in more than 370 genes in the offspring's developing hypothalamus. Many of these genes are known to be involved in energy use, protein regulation and synapse formation, functions that are critical to neurological development.

In addition, Bale and colleagues found promising signs that these results translate to humans. They analyzed human placentas that had been discarded after the birth of male babies. No identifying information was associated with the tissue, but the researchers discovered that the male (XY) side of the placenta had reduced OGT expression compared to the maternal (XX) side, similar to this genes regulation in mouse placenta.


Together, the results suggest that the OGT enzyme may be
acting to protect the brain during gestation but that males
have less of this protective enzyme to begin with, placing
them at an increased risk of abnormal neurodevelopment
if their mother is stressed during pregnancy.


If OGT's status as a biomarker for exposure to prenatal stress and heightened risk for neurodevelopmental problems is confirmed in humans, Bale said it could help detect vulnerable individuals earlier in life than is currently possible.

"We want to get to the point where we can predict the occurrence of neurodevelopmental disease," Bale said. "If we have a marker for exposure, we can meld that with what we know about the genetic profiles that predispose individuals to these conditions and keep a close eye on children who have increased risks."

This study was supported by the National Institute of Mental Health.

Original article: http://www.upenn.edu/pennnews/news/mom-s-placenta-reflects-her-exposure-stress-impacts-brains-her-offspring-penn-vet-team-finds