Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact


Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo in 1993 as a first generation internet teaching tool consolidating human embryology teaching for first year medical students.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human.

The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

March 19, 2013--------News Archive Return to: News Alerts


The key to immortality involves telomeres, the end tabs that protect
chromosomes from sticking together or fraying.

As normal cells divide, the telomeres gradually grow shorter
until they become so short the cell stops dividing and dies.







WHO Child Growth Charts

       

Immortality gene mutation identifies brain tumors

Newly identified mutations in a gene that makes cells immortal appear to play a pivotal role in three of the most common types of brain tumors, as well as cancers of the liver, tongue and urinary tract, according to research led by Duke Cancer Institute.

Published Monday, March 18, 2013, in the journal Proceedings of the National Academy of Sciences, the finding provides a long-sought answer to how some malignant cells are able to proliferate, while normal cells peter out and die.


The key to immortality involves telomeres, the end tabs that
protect chromosomes from sticking together or fraying.

As normal cells divide, the telomeres gradually grow shorter
until they become so short the cell stops dividing and dies.

An enzyme called telomerase serves as a sort of growth
factor, temporarily maintaining the length of the telomeres
and enabling the cell to continue proliferating.


Scientists have recently learned that mutations of the so-called TERT promoter gene, which controls the instructions for making the telomerase enzyme, is involved in some cancer tumors.


It appears that a mutation of the TERT promoter gene
essentially creates a constant growth spurt so that the
telomeres never shorten, and the cells can divide forever.

Earlier this year, the process was described as a leading
contributor to melanomas and a small number
of other tumors as well.


The current research expands those findings by analyzing more than 1,200 tumors across 60 different types of cancer. Led by Hai Yan, M.D., PhD, a professor of pathology and investigator with Duke's Preston Robert Tisch Brain Tumor Center, the research team includes collaborators at Johns Hopkins and multiple other institutions.

The researchers found almost no TERT promoter mutations in many major cancer types, including breast and prostate malignancies, suggesting that some yet-unknown factor is causing the telomeres to elongate and promote cell immortality in those diseases. But, the Duke-led research team also identified nine tumor types highly associated with TERT promoter mutations.


These cancers generally share a common feature: they arise
in tissues with relatively low rates of cell renewal, suggesting
they require TERT promoter mutations in order to trigger
the abnormal telomerase production.

These cancer types include melanomas, liposarcomas,
hepatocellular carcinomas, transitional cell carcinomas
of the urinary tract, squamous cell carcinomas of the
tongue, medulloblastomas, and subtypes of gliomas,
including 83 percent of primary glioblastomas, the most
common brain tumor in adults with a
median survival of only 15 months.


"The results in brain tumors were quite striking," said Patrick J. Killela, co-lead author of the study and a Duke graduate student. "For primary glioblastoma, this is the most frequent genetic mutation yet identified in this tumor."

Four years ago, Yan's laboratory at Duke identified critical gene mutations associated with glioblastoma. But those mutations—in the IDH1 and IDH2 genes—were found only in rare glioblastomas that arose from other, lower-grade tumors known as astrocytomas and oligodendrogliomas. The main cancer-causing mutation for the other primary glioblastomas remained elusive.

"Now we see this," said Zachary J. Reitman, Ph.D., an associate in research at Duke and co-lead author of the study. "This is a major discovery in brain tumors, because this single mutation can now distinguish one tumor from another – and these are tumors that are difficult to classify with a typical pathology test. For primary glioblastoma, the TERT mutation is remarkably common, while for astrocytomas, it is rare. Using both IDH1 and TERT, we can greatly improve diagnosis and prognosis."


Yan believes TERT mutations also provide a biomarker that
may be useful for early detection of urinary tract and liver
tumors. The finding provides new targets
for drug development.


"Cancer is very smart to have figured out a way to use a mechanism to live longer," Yan said. "Now that we know how it operates in these tumor types, we might be able to beat it at its own game."

In addition to Yan, Killela and Reitman, study authors include Allan H. Friedman, Henry Friedman, Yiping He, B. Ahmed Rasheed, Roger E. McLendon and Darell D. Bigner at Duke; Yuchen Jiao, Chetan Bettegowda, Nishant Agrawal, Luis A. Diaz, Jr. Gary Gallia, Ralph H. Hruban, George I. Jallo, Alan K. Meeker, George Netto, Gregory J. Riggins, Ie-Ming Shih, Michael S. Torbenson, Victor E. Velculescu, Tian-Li Wang, Laura D. Wood, Ming Zhang, Nikolas Papadopoulos, Kenneth W. Kinzler and Bert Vogelstein of Johns Hopkins Medical Institutions; Beppino C. Giovanella of the Christus Stehlin Foundation for Cancer Research; Arthur P. Grollman and Thomas Rosenquist of Stony Brook University; Tong-Chuan He of the University of Chicago Medical Center; Nils Mandahl and Fredrik Mertens of Lund University Hospital, Sweden; Mark Schiffman and Nicolas Wentzensen of the National Cancer Institute; and Dan Theodorescu the University of Colorado Comprehensive Cancer Center.

Funding support was provided in part by The Pediatric Brain Tumor Foundation Institute, American Cancer Society Research Scholar Award; the National Cancer Institute (5R01-CA140316, 5P50 CA108785, CA121113, CA075115, CA104106, CA057345, CA129825, CA43460, CA57345, CA62924, ES04068, N01-CN-43309, and R37 011898); and the National Institute of Neurological Disorders and Stroke (5P50 NS20023). Additional supporters are listed in the full text of the study.

Original article: http://www.dukehealth.org/health_library/news/immortality-gene-mutation-identifies-brain-tumors-and-other-cancers