Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact


Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo in 1993 as a first generation internet teaching tool consolidating human embryology teaching for first year medical students.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human.

The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

April 3, 2013--------News Archive Return to: News Alerts


In the study, the researchers investigated a strain of Salmonella,
in both cell lines and animal models, to determine how
the innate immune system singles out the bacteria for attack.






WHO Child Growth Charts

       

How cells distinguish friend from foe

Research shows how our innate immune system distinguishes between dangerous pathogens and friendly microbes. Like burglars entering a house, hostile bacteria give themselves away when breaking into cells. However, select proteins instantly detect them, triggering an alarm mobilizing our innate immune response.

This new understanding of immunity could ultimately help researchers find new targets to treat inflammatory disorders. The Univeresity of California at Davis (UC Davis) paper was published in Nature on March 31, 2013.

The immune system has a number of difficult tasks, including differentiating between cells and microbes. However, the body, particularly the digestive tract, contains trillions of beneficial microbes, which must be distinguished from dangerous pathogens.

“We are colonized by microbes. In fact, there are more bacteria in the body than cells,” said senior author Andreas Bäumler, professor and vice chair of research in the UC Davis Department of Medical Microbiogy and Immunology. “The immune system must not overreact to these beneficial microbes. On the other hand it must react viciously when a pathogen invades.”


The key to distinguishing between pathogenic and
beneficial bacteria are their differing goals.

Ordinary digestive bacteria are content to colonize the gut,
while their more virulent cousins must break into cells to
survive. Salmonella achieves this by activating enzymes
that rearrange the actin in a cell’s cytoskeleton.

Fortunately, cellular proteins sense the active
enzymes, leading to a rapid immune response.


In the study, the researchers investigated a strain of Salmonella, in both cell lines and animal models, to determine how the innate immune system singles out the bacteria for attack. Salmonella uses a secretion system, a type of molecular syringe, to inject pathogenic proteins, such as SopE, into the cell. SopE activates human GTPase enzymes RAC1 and CDC42, which break down the surrounding actin, allowing the bacteriuminside.

But breaking and entering has consequences.


Sensing the active GTPase enzymes, and recognizing their
pathogenic nature, a protein called NOD1 sends the alarm,
signaling other proteins, such as RIP2, that the cell
is in danger.

Ultimately, this signaling pathway reaches the protein NF-κB,
a transcription factor that instructs the genome to mount
an immune response, activating genes associated with
inflammation, neutrophils and other immune functions.

Though it had been hypothesized that GTPase activation
might trigger an immune response to attacking bacteria,
prior to this study, no one had identified
the pathway to NF-κB.

These results were somewhat surprising, as NOD1 had been
thoroughly studied; leading many researchers to conclude it had no further mysteries to divulge.

No one expected it to play such a significant role
in alerting the innate immune system that cells
were under attack.


These results could help researchers find new targets to combat inflammatory diseases. For example, NF-κB is known to be involved in a variety of conditions, such as inflammatory bowel disease, arthritis, sepsis and others. By understanding the pathways that activate inflammation, scientists and clinicians can develop ways to inhibit it.

“These pathways might be triggered erroneously because the host thinks there’s an infection,” said Bäumler. “Knowing the pathways and how they are activated is critical to controlling them.”

Other authors include A. Marijke Keestra, Maria G.Winter, Josef J. Auburger, Simon P. Fräßle, Mariana N. Xavier, Sebastian E. Winter, Anita Kim, Victor Poon, Mariëtta M. Ravesloot, Julian F. T. Waldenmaier, Renée M. Tsolis and Richard A. Eigenheer.

UC Davis Health System is improving lives and transforming health care by providing excellent patient care, conducting groundbreaking research, fostering innovative, interprofessional education, and creating dynamic, productive partnerships with the community. The academic health system includes one of the country's best medical schools, a 619-bed acute-care teaching hospital, a 1000-member physician's practice group and the new Betty Irene Moore School of Nursing. It is home to a National Cancer Institute-designated comprehensive cancer center, an international neurodevelopmental institute, a stem cell institute and a comprehensive children's hospital. Other nationally prominent centers focus on advancing telemedicine, improving vascular care, eliminating health disparities and translating research findings into new treatments for patients. Together, they make UC Davis a hub of innovation that is transforming health for all. For more information, visit healthsystem.ucdavis.edu.

Original article: http://www.ucdmc.ucdavis.edu/publish/news/newsroom/7664