Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact


Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo in 1993 as a first generation internet teaching tool consolidating human embryology teaching for first year medical students.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human.

The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Archive
Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFemale Reproductive SystemFertilizationThe Appearance of SomitesFirst TrimesterSecond TrimesterThird TrimesterFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Search artcles published since 2007

April 4, 2013--------News Archive Return to: News Alerts


Stephen J. Benkovic, Mark Hedglin, and other members of Professor Benkovic's research
team have studied the importance of "clamp loader" enzymes and their activities during
DNA replication. In this image, the clamp loader is represented, for illustrative
purposes, by a hand, which is loading the sliding clamp ring onto DNA.

Image Credit: Benkovic lab, Penn State University.







WHO Child Growth Charts

       

Crucial Step in Human DNA Replication Observed

Members of Pennsylvania State University research team have discovered the importance of "clamp loader" enzymes and their activities during DNA replication.

For the first time, an elusive step in the process of human DNA replication has been demystified by scientists at Penn State University. According to senior author Stephen J. Benkovic, an Evan Pugh Professor of Chemistry and Holder of the Eberly Family Chair in Chemistry at Penn State, the scientists "discovered how a key step in human DNA replication is performed." The results of the research will be published in the journal eLife on 2 April 2013.


Part of the DNA replication process—in humans and in other
life forms—involves loading of molecular structures called
sliding clamps onto DNA. This crucial step in DNA replication
had remained somewhat mysterious and had not
been well studied in human DNA replication.


Mark Hedglin, a post-doctoral researcher in Penn State's Department of Chemistry and a member of Benkovic's team, explained that the sliding clamp is a ring-shaped protein that acts to encircle the DNA strand, latching around it like a watch band. The sliding clamp then serves to anchor special enzymes called polymerases to the DNA, ensuring efficient copying of the genetic material.

"Without a sliding clamp, polymerases can copy very few bases—the molecular 'letters' that make up the code of DNA—at a time. But the clamp helps the polymerase to stay in place, allowing it to copy thousands of bases before being removed from the strand of DNA," Hedglin said.

Hedglin explained that, due to the closed circular structure of sliding clamps, another necessary step in DNA replication is the presence of a "clamp loader," which acts to latch and unlatch the sliding clamps at key stages during the process.


"The big unknown has always been how the sliding clamp
and the clamp loader interact and the timing of latching
and unlatching of the clamp from the DNA
.

We know that polymerases and clamp loaders can't bind
the sliding clamp at the same time, so the hypothesis was
that clamp loaders latched sliding clamps onto DNA,
then left for some time during DNA replication,
returning only to unlatch the clamps after the
polymerase left so they could be
recycled for further use."

Mark Hedglin
post-doctoral researcher
Department of Chemistry
Pennsylvania State University


To test this hypothesis, the team of researchers used a method called Förster resonance energy transfer (FRET), a technique of attaching fluorescent "tags" to human proteins and sections of DNA in order to monitor the interactions between them.

"With these tags in place, we then observed the formation of holoenzymes -- the active form of the polymerase involved in DNA replication, which consists of the polymerase itself along with any accessory factors that optimize its activity," Hedglin said. "We found that whenever a sliding clamp is loaded onto a DNA template in the absence of polymerase, the clamp loader quickly removed the clamp so that free clamps did not build up on the DNA. However, whenever a polymerase was present, it captured the sliding clamp and the clamp loader then dissociated from the DNA strand."


The team members also found that, during the moments
when both the clamp loader and the clamp were bound
to the DNA, they were not intimately engaged with each
other. Rather, the clamp loader released the closed clamp
onto the DNA, allowing an opportunity for the polymerase
to capture the clamp, completing the assembly of the
holoenzyme. Subsequently, the clamp
loader dissociated from DNA.


"Our research demonstrates that the DNA polymerase holoenzyme in humans consists of only a clamp and a DNA polymerase. The clamp loader is not part of it. It disengages from the DNA after the polymerase binds the clamp," Hedglin added.

Benkovic noted that this mechanism provides a means for the cell to recycle scarce clamps when they are not in use for productive replication.

In addition to Benkovic and Hedglin, other Penn State researchers who contributed to the paper include Senthil K Perumal and Zhenxin Hu.

The research was funded by the National Institutes of Health.

Original article: http://science.psu.edu/news-and-events/2013-news/Benkovic4-2013