Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs- Pregnancy Calculator- --Reproductive System-- News --Contact
 

April 26, 2013--------News Archive

 
Arabidopsis and mutants

Against a backdrop of a digital concept of the endoplasmic reticulum, this image depicts an Arabidopsis plant (center) surrounded by mutants that were compromised when their gene translation was inhibited by microRNAs.

The developmental defects of these mutants highlight the important contribution of the translation inhibition activity by plant microRNAs to developmental patterns.

Credit: X. Chen Lab, UC Riverside





WHO Child Growth Charts
     

 

 

 

Endoplasmic reticulum key to gene silencing

RNA molecules, made from DNA, are best known for their help in protein production. MicroRNAs (miRNAs), however, are short RNA sequences known to target tens to hundreds of genes each and repress, or "silence," them. Now the site where that silencing occurs is found to be the endoplasmic reticulum (ER).

Found in plants and animals, microRNAs do not encode proteins—but act in gene regulation to impact almost all biological processes from development—to physiology—to stress response.

Present in almost in every cell, microRNAs are known to target tens to hundreds of genes each and to be able to repress, or "silence," their expression. What is less well understood is how exactly miRNAs repress target gene expression.


Now a team of scientists led by geneticists at the University of California, Riverside has conducted a study on plants (Arabidopsis) showing that the site of action for the repression of target gene expression occurs on the endoplasmic reticulum (ER).

The ER is a cell organelle made up of an interconnected network of membranes — essentially, flattened sacs and branching tubules — that extend like a flat balloon throughout the cytoplasm in plant and animal cells.


"Our study is the first to demonstrate that the ER is where miRNA-mediated translation repression occurs," said lead researcher Xuemei Chen, a professor of plant cell and molecular biology and a Howard Hughes Medical Institute-Gordon and Betty Moore Foundation Investigator. "To understand how microRNAs repress target gene expression, we first need to know where microRNAs act in the cell. Until now no one knew that membranes are essential for microRNA activity. Our work shows that an integral membrane protein, AMP1, is required for the miRNA-mediated target gene repression to be successful. As AMP1 has counterparts in animals, our findings in plants could have broader implications."

Study results appear today in the journal Cell.


Simply put, DNA makes RNA, and then RNA makes proteins.

Specifically, RNA encodes genetic information that can be "translated" into the amino acid sequence of proteins.

But noncoding RNAs — RNAs that do not encode proteins — are increasingly found to act in numerous biological processes.

MicroRNAs are a class of noncoding RNAs whose main function is to downregulate gene expression.


Research on miRNAs has increased tremendously since they were first identified about 20 years ago. In the case of diseases, if some genes are up- or down-regulated, miRNAs can be used to change the expression of these genes to fight the diseases, thus showing therapeutic potential.


MicroRNAs regulate target genes by two major modes of action:

1) they either destabilize the target RNAs, leading to their degradation, or

2) they do not impact the stability of the target RNAs, but simply prevent them from being translated into proteins — a process known as translation inhibition.

The end result of translation inhibition is that genes do not get expressed. Just how miRNAs cause translational inhibition of their target genes is not well understood.


Chen: "We were surprised that the ER is required for the translational inhibition activity of miRNAs. This new knowledge will expedite our understanding of the mechanism of gene silencing. Basically, now we know where to look: the ER. We also suspect it is the rough ER portions that are involved."

Chen explained that ER has two types: rough and smooth. Rough ER, synthesizes and packages proteins and looks bumpy; smooth ER, acts in lipid synthesis and protein secretion, and resembles tubes. ER protein AMP1 is anchored in the rough ER.

"My lab has been conducting research on AMP1 for many years," she said. "And it's this protein that drew our attention to the ER. First, we realized that AMP1 is involved in miRNA-mediated translational inhibition. Then, since we already knew that AMP1 is localized in the rough ER, we shifted our focus to this organelle."

Next, her lab will attempt to crack the mechanism of miRNA-mediated translational inhibition. They will investigate, too, how miRNAs are recruited to the ER.

Chen was joined in the study by Shengben Li (first author of the research paper), Lin Liu, Xigang Liu, Yu Yu, Lijuan Ji and Natasha Raikhel at UC Riverside; Xiaohong Zhuang and Liwen Jiang at the Chinese University of Hong Kong; Xia Cui and Xiaofeng Cao at the Chinese Avademy of Sciences, Beijing; Zhiqiang Pan at the University of Mississippi; Beixin Mo at Shenzhen University, China; and Fuchun Zhang at Xinjiang University, China.

The study was supported by grants to Chen from the National Institutes of Health, the National Science Foundation, and the Howard Hughes Medical Institute and Gordon and Betty Moore Foundation.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Original article: http://www.eurekalert.org/pub_releases/2013-04/uoc--rik042513.php