Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs- Pregnancy Calculator- --Reproductive System-- News --Contact
 

News Alerts    April 30, 2013--------News Archive

 
Human Endothelia Cells

The image on the left demonstrates control cells extending elongated branches that interconnect with one another while the image on the right shows that in the absence of the transcription factor CASZ1, the cells are unable to sprout properly.

Credit: Image: Courtesy of the Salk Institute for Biological Studies






WHO Child Growth Charts
     

 

 

 

Uncovered, gene linked to blood vessel formation

University of North Carolina researchers have discovered that disrupting a gene that acts as a regulatory switch to turn on other genes can keep blood vessels from forming and developing properly.

Further study of this gene – a "transcription factor" called CASZ1 – may uncover a regulatory network that influences the development of cardiovascular disease. A number of other studies have already shown a genetic link between mutations in CASZ1 and hypertension.

The UNC research, which was carried out in a frog model as well as human cells, will be published April 29, 2013, in the journal Developmental Cell.

"There has been a lot of interest in studying the vasculature because of its role in a wide range of disease states, as well as human development. But there are very few transcription factors that are known to affect the vasculature. To find a new one is quite unique, and then to be able to link it up to a known network of vascular development is surprising and encouraging," said senior study author Frank Conlon, PhD, an associate professor of genetics in the UNC School of Medicine.

During vascular development, specialized cells coalesce into three-dimensional "cords" that then hollow out to provide a path for transporting blood throughout the body. This process involves the complex coordination of molecular entities like growth factors and signaling molecules, defects that have been associated with human illnesses such as cancer, stroke, and atherosclerosis.

Conlon has long been interested in understanding how these various molecular players come together in the cardiovascular system. In 2008, his laboratory showed that a gene called CASZ1 is involved in the development of heart muscle. In this study, he and his colleagues decided to look for its role in the development of blood vessels.

Marta S. Charpentier and Kathleen S. Christine, lead authors of the study and graduate students in Conlon's laboratory, removed CASZ1 from frog embryos and looked to see how its absence affected the development of the vasculature. Without CASZ1, the frogs failed to form branched and functional blood vessels. When they removed the CASZ1 gene from cultured human cells, Charpentier and Christine saw similar defects: the cells did not sprout or branch correctly due to their inability to maintain proper adhesions with the surrounding extracellular matrix.

"If you take out CASZ1, these cultured human cells try to migrate by sending out these filopodia or little feet, but what happens is it is like someone nails down the back end of those growing vessels. They try to move and keep getting thinner and thinner, and like an elastic band it gets to be too much and just snaps back. It appears to cause an adhesion defect that makes the cells too sticky to form normal vessels," said Conlon.

CASZ1 is a transcription factor, a master switch that controls when and where other genes are expressed. Therefore, Charpentier and Christine did a series of experiments to explore CASZ1's influence on a known vascular network, involving other genes called Egfl7 and RhoA. When Charpentier and Christine added the Egfl7 gene to her CASZ1-depleted cells, the defect in blood vessel formation went away, suggesting that the two genes are connected. They then showed that CASZ1 directly acts on the Egfl7 gene, and that this activity in turn activates the RhoA gene, which is known to be required for cellular behaviors associated with adhesion and migration.

Transcription factors themselves are so essential that they are generally considered to be "undruggable," but the researchers say that further studies into how specific transcription factors work and the targets they control could eventually lead to new drug candidates.

"Egfl7 is a therapeutic target of interest, because companies such as Genentech are already working on it for cancer therapy," said Charpentier. "Figuring out how it is regulated is important not just for understanding the biology of it, but also for discovering targets that could trigger the development of innovative therapeutic strategies for cardiovascular disease."

The research was a collaboration between the Conlon, Taylor, and Bautch labs at the McAllister Heart Institute at UNC and was funded by the National Institutes of Health and the American Heart Association. Study co-authors from UNC were Nirav M. Amin, PhD; Kerry M. Dorr; Erich J. Kushner, PhD; Victoria L. Bautch, PhD; and Joan M. Taylor, PhD.

Original article: http://news.unchealthcare.org/news/2013/april/unc-research-uncovers-molecular-role-of-gene-linked-to-blood-vessel-formation