Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts | News Archive May 17, 2013

 
"The idea of using time-lapse imaging and morphokinetic analysis is intriguing, because having available a completely non-invasive procedure to predict which embryo is euploid or aneuploid would allow the application of this technique for virtually every assisted reproduction cycle." Markus Montag ,Scientist, Department of Gynecological Endocrinology and Fertility Disorders, University Clinics of Heidelberg".







WHO Child Growth Charts

 

 

 

Breakthrough for IVF?

One of the greatest challenges in assisted reproduction is to find the one embryo, which can develop successfully. Now, combining time lapse imaging of IVF embryos cultured for 5 days to the blastocyst stage with trophoblast biopsy, it has proved possible to correlate the rate of blastocyst formation with chromosomal abnormalities.

Such an approach should allow early and widely accessible non-invasive identification of the best embryo to place in the uterus.


The majority of embryos that fail to initiate a pregnancy do so because they have abnormal chromosomes. Unfortunately these embryos cannot be recognized by embryologists using conventional microscopy. Only biopsy of one or a few cells of the early embryo followed by preimplantation genetic screening (PGS) can establish whether the number of chromosomes is normal or not.


In their research Alison Campbell and colleagues of CARE Fertility, Nottingham, went one step further, describing the use of morphokinetic analysis to identify those embryos that have an abnormal chromosomal constitution. In that study, they cultured embryos under time lapse imaging to day 5, by which time they formed blastocysts. These were then biopsied by removing a few of the cells from the outer layer of the embryo, which will normally contribute only to the placenta. The biopsy was then analyzed for its chromosomal constitution.

The authors then related the chromosomal make up of each embryo to its morphokinetic history. They found that a proportion of embryos with chromosomal abnormalities were delayed in initiating blastocyst formation and also reached the full blastocyst stage later than did normal embryos. The authors conclude that using this approach they could avoid exposing at least a subset of the embryos to invasive biopsy procedures.


"This non-invasive model for the classification of chromosomal abnormality may be used to avoid selecting embryos with high risk of aneuploidy while selecting those with reduced risk,"

Alison Campbell, lead author


The same group has now applied this risk classification model retrospectively to examine the pregnancy outcomes in a series of unselected IVF patients without the use of PGS. A significant improvement in both implantation and live birth rates was observed when low risk embryos were transferred.


"The idea of using time-lapse imaging and morphokinetic analysis is intriguing, because having available a completely non-invasive procedure to predict which embryo is euploid or aneuploid would allow the application of this technique for virtually every assisted reproduction cycle.

The potential benefit of such an approach is obvious in view of published data on the incidence of aneuploidy even in oocytes from younger women."

Markus Montag ,Scientist, Department of Gynecological Endocrinology and Fertility Disorders, University Clinics of Heidelberg


The research was published in Reproductive BioMedicine Online on May 17, 2013.

"Recently the world of IVF has become very excited by the use of time-lapse imaging (TLI) of early human embryo development to follow the change of embryo morphology over time. The data can then be compared with the outcome after the embryos are transferred. The hope is that this morphokinetic analysis will enable reproductive specialists to predict more successfully those embryos most likely to generate pregnancies. The advantage of using morphokinetic analysis to predict outcome is its minimal invasiveness,"says Martin Johnson, Editor of Reproductive BioMedicine Online

Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics, by Campbell, A., Fishel, S., Bowman, N., Duffy, S., Sedler, M., Hickman, C.F.L.; Reproductive BioMedicine Online; 26, 477- 485;DOI: 10.1016/j.rbmo.2013.02.006. The article appears in Reproductive BioMedicine Online, Volume 26, Issue 5 (May 2013), published by Elsevier. Available online on ScienceDirect.

Retrospective analysis of clinical pregnancy and live birth rate for IVF embryos classified for aneuploidy risk, without PGS, demonstrates the benefit of a time-lapse imaging derived model, by Campbell, A., Fishel, S., Bowman, N., Duffy, S., Sedler, M., Thornton, S.; This article is available as an Article in Press in Reproductive Biomedicine Online (May 17, 2013), published by Elsevier. Available online on ScienceDirect on May 17.

Alison Campbell and Simon Fishel
CARE Fertility, John Webster House, 6 Lawrence Drive, Nottingham
Business Park, Nottingham, NG8 6PZ

Alison Campbell, telephone: +44(0)161 2493040, fax: +44(0)1612244283, Alison.campbell@carefertility.com

Simon Fishel, Simon.fishel@carefertility.com

About Reproductive Biomedicine Online

Reproductive BioMedicine Online covers the formation, growth and differentiation of the human embryo. It is intended to bring to public attention new research on biological and clinical research on human reproduction and the human embryo including relevant studies on animals. It is published by a group of scientists and clinicians working in these fields of study. Its audience comprises researchers, clinicians, practitioners, academics and patients.

It is an official publication of:

The American Association of Bioanalysts (AAB) http://www.aab.org

Alpha – Scientists in Reproductive Medicine, http://alphascientists.org

The American College of Embryology (ACE) http://www.embcol.org

The Global Chinese Association for Reproductive Medicine (GCARM) http://www.gcarm.com

The International Society for In Vitro Fertilization (ISIVF) http://www.isivf.com

The Mediterranean Society for Reproductive Medicine (MSRM) http://www.medreproduction.org

The Preimplantation Genetic Diagnosis International Society (PGDIS) http://www.pgdis.org

The Turkish Society of Reproductive Medicine (TSRM) http://www.tsrm.org.tr

About Elsevier

Elsevier is a world-leading publisher of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include SciVerse ScienceDirect, SciVerse Scopus, Reaxys, MD Consult and Nursing Consult, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai's Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Original article: http://www.eurekalert.org/pub_releases/2013-05/e-bfi051613.php