Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts | News Archive May 22, 2013

 
So-called autoimmune diseases develop when the immune system goes awry and attacks the body’s own tissues. CD52 holds great promise as a therapeutic agent for preventing and treating autoimmune diseases such as type 1 diabetes.







WHO Child Growth Charts

 

 

 

Immune protein could stop diabetes in its tracks

Melbourne researchers have identified an immune protein that has the potential to stop or reverse the development of type 1 diabetes in its early stages, before insulin-producing cells have been destroyed.

Diabetes researcher Professor Len Harrison has identified that the immune protein CD52 protects the body against excessive or damaging immune responses, and could be used to prevent and treat type 1 diabetes and other autoimmune diseases.


The discovery has wider repercussions, as the CD52 protein is responsible for protecting the body against excessive immune responses, and could be used to treat, or even prevent, other immune disorders such as multiple sclerosis and rheumatoid arthritis.


Professor Len Harrison, Dr Esther Bandala-Sanchez and Dr Yuxia Zhang led the research team from the Walter and Eliza Hall Institute's Molecular Medicine division that identified the immune protein CD52 as responsible for suppressing the immune response, and its potential for protecting against autoimmune diseases.

The research was published today in the journal Nature Immunology. So-called autoimmune diseases develop when the immune system goes awry and attacks the body’s own tissues. Professor Harrison said CD52 held great promise as a therapeutic agent for preventing and treating autoimmune diseases such as type 1 diabetes.

“Immune suppression by CD52 is a previously undiscovered mechanism that the body uses to regulate itself, and protect itself against excessive or damaging immune responses,” Professor Harrison said. “We are excited about the prospect of developing this discovery to clinical trials as soon as possible, to see if CD52 can be used to prevent and treat type 1 diabetes and other autoimmune diseases. This has already elicited interest from pharmaceutical companies.”


Type 1 diabetes is an autoimmune disease that develops when immune cells attack and destroy insulin-producing beta cells in the pancreas. Approximately 120,000 Australians have type 1 diabetes and incidence has doubled in the last 20 years.


“Type 1 diabetes is a life-long disease,” Professor Harrison said. “It typically develops in children and teenagers, and it really makes life incredibly difficult for them and their families. It also causes significant long-term complications involving the eyes, kidneys and blood vessel damage, and at great cost to the community.”

Professor Harrison said that T cells that have or release high levels of CD52 are necessary to maintain normal balance in the immune system. “In a preclinical model of type 1 diabetes, we showed that removal of CD52-producing immune cells led to rapid development of diabetes. We think that cells that release CD52 are essential to prevent the development of autoiummune disease, and that CD52 has great potential as a therapeutic agent,” he said.

CD52 appears to play a dominant role in controlling or suppressing immune activity in the early stages of the immune response, Professor Harrison said. “We identified a specialised population of immune cells (T cells) that carry high levels of CD52, which they release to dampen the activity of other T cells and prevent uncontrolled immune responses,” Professor Harrison said. “The cells act as an early ‘braking’ mechanism.”

Professor Harrison said his goal is to prevent and ultimately cure type 1 diabetes. “In animal models we can prevent and cure type 1 diabetes,” Professor Harrison said. “I am hopeful that these results will be translatable into humans, hopefully in the not-too-distant future.”

This research was supported by the National Health and Medical Research Council of Australia and the Victorian Government.

Original article: http://www.wehi.edu.au/site/latest_news/immune_protein_could_sto
p_diabetes_in_its_tracks