Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts | News Archive June 18, 2013

 

Rett Syndrome is a single-gene neurological disorder that affects girls.

Development slows during the first year of life, then regresses, as toddlers lose
speech, mobility, and hand use. Many girls have seizures, orthopedic and severe
digestive problems, as well as breathing and other autonomic impairments.

Most live into adulthood and require total, round-the-clock care.
Rett Syndrome affects about 1 in 10,000 girls born each year.

MECP2 Duplication Syndrome
Unlike Rett Syndrome, which is caused by mutations or deletions in the MECP2 gene,
MECP2 symptoms arise when an area of the X chromosome (Xq28), which includes
the MECP2 gene, is erroneously duplicated. The section duplicated may vary from
individual to individual and contribute to the severity of the disease.

MECP2 syndrome has been diagnosed mostly in boys.







WHO Child Growth Charts

 

 

 

Rett Syndrome protein surrenders some secrets

Rett Syndrome, an autism spectrum disorder, is complicated by the fact that the implicated gene controls a suite of other genes. Discovery of a mutant gene responsible for a disease is a milestone, but may be only a first step towards treatment or cure. That step may be now.

Two papers, published in today's Nature Neuroscience and Nature, reveal key steps in how mutations in the gene for methyl CpG-binding protein (MECP2) cause the condition. The Rett Syndrome Research Trust (RSRT) funded this work with generous support from partners Rett Syndrome Research Trust UK and Rett Syndrome Research & Treatment Foundation.


Rett Syndrome is a single-gene neurological disorder that affects girls.

Development slows during the first year of life, then regresses, as toddlers lose speech, mobility, and hand use. Many girls have seizures, orthopedic and severe digestive problems, as well as breathing and other autonomic impairments.

Most live into adulthood and require total, round-the-clock care. Rett Syndrome affects about 1 in 10,000 girls born each year.


The papers result from a collaboration between the labs of Adrian Bird, Ph.D., Buchanan Professor of Genetics at the Wellcome Trust Centre for Cell Biology at the University of Edinburgh, and Michael Greenberg, Ph.D., Department Chair and Nathan Marsh Pusey Professor of Neurobiology at Harvard Medical School.

The Bird and Greenberg labs have been working together since 2011 as members of the MECP2 Consortium along with Gail Mandel, a Howard Hughes Investigator at Oregon Health and Sciences University. The Consortium, launched by RSRT with a $1 million lead gift by RSRT Trustee Tony Schoener and his wife Kathy, fosters novel alliances among leading scientists to interrogate the molecules at the root of the syndrome.

Professor Bird discovered the MeCP2 protein in 1992. In 2007, he showed that affected brain cells in a mouse model of Rett Syndrome can regain function, even in late stages of the disease, suggesting that the disorder is curable. Despite this unexpected breakthrough the function of the Rett protein remains elusive.

In search of the function, the Bird lab set out to identify the key domains of the protein. Mutations found in individuals suffering from Rett led them to their answer.


By focusing only on "missense" mutations, which alter a single amino acid, the researchers were able to hone in on two key domains where the mutations aggregated.

The first was the well-known methyl binding domain (MBD) which is the site where MeCP2 binds to methylated DNA, thereby modulating the expression of downstream genes.

The second key domain is where MeCP2 binds to a molecule called NCoR/SMRT, a large multi-protein machine that shuts down genes. The Bird lab coined this domain the NCoR/SMRT Interaction Domain (NID).


"Further proof of the importance of the MBD and the NID came from mining the genomes of 6503 healthy people. The result was the exact mirror image of the situation seen in Rett. All along the MECP2 gene normal people have non-disease causing alterations, known as polymorphisms. However, no alterations of any kind could be found in the MBD and the NID, indicating that these domains are prized real estate that cannot be tampered with," said Matthew Lyst, postdoctoral researcher and lead author on the Nature Neuroscience paper.


The most frequent Rett mutation in the NID is at amino acid # 306. When the researchers recapitulated the mutation in mice, the animals suffered symptoms similar to girls with Rett.

At fault: loss of the interaction between the MeCP2 and NCoR/SMRT proteins and further evidence of the importance of the NID.


"We knew that MeCP2 binds to the genome at methylated sites, but nothing more than that. We now know that its function depends on the ability to bring NCoR/SMRT co-repressors to the DNA," Prof. Bird summed up.

The Nature paper continues the story through another amino acid location, 308, which is very near the 306 mutation in the human version of the gene. Sensory input leads to the addition of a phosphate group at the 308 site and this alters the ability of the MeCP2 protein to interact with the NCoR/SMRT co-repressor, thereby affecting the expression of downstream proteins. The Greenberg lab created mice with a mutation at 308 that are unable to attach a phosphate group. As a result, genes that MeCP2 normally controls are mis-regulated.

"The MeCP2 308 mice have reduced brain weight, motor system abnormalities, and lower seizure thresholds that correspond to the deceleration of head growth, motor system impairments and seizure disorders found in Rett. This suggests that the modification of 308 is critical for the normal function of MeCP2 and its disruption might contribute to Rett," said Daniel Ebert, postdoctoral researcher and lead author on the Nature paper.


Whether the phosphates are added to MeCP2 depends on activity of the neuron.

The Greenberg lab has found that in early life, sensory input leads to modification of MeCP2 at multiple sites, including 308.

These changes appear to be critical for proper brain development, and their absence in Rett Syndrome may begin to explain what goes wrong in the brains of girls with this devastating disorder.


Each step deciphered in the genetic choreography behind Rett Syndrome is a step towards treatment. "To design an effective small molecule therapy, one needs to understand the underlying mechanisms of how MeCP2 functions and how mutations in MeCP2 lead to disease. Both papers published today make significant progress by providing compelling evidence for dysregulation of the MeCP2-NCoR interaction underlying key aspects of Rett Syndrome," said Prof. Greenberg.

What still isn't known is which genes the co-repressors target. And that will be the next leap in traveling the road from a mutant gene to a little girl who wrings her hands, has seizures and can't talk or walk. Discovering the other molecular events might reveal intersecting or redundant genetic pathways that drug developers can tweak in the search for treatments.

"I am very pleased with the collaborative effort that has resulted thus far from the Consortium. To achieve this amount of progress over such a relatively short period of time attests to the abilities of the Consortium members to freely exchange ideas, and to encourage one another while at the same time providing critical evaluation of the work as it progresses. I look forward with great anticipation to future discoveries," said Monica Coenraads, co-founder and Executive Director of RSRT and mother to a teenaged daughter with the disorder.

About the Rett Syndrome Research Trust
The Rett Syndrome Research Trust is a non-profit exclusively devoted to global research on Rett Syndrome and related MECP2 disorders. Our goal is to heal children and adults who will otherwise suffer the effects of these disorders for the rest of their lives. To learn more about the Trust, please visit http://www.ReverseRett.org

Our partners in supporting this work are parents' organizations worldwide including Rett Syndrome Research Trust UK, Rett Syndrome Research & Treatment Foundation (Israel), Skye Wellesley Foundation (UK), Stichting Rett Syndrome (Holland), Rett Syndrom Deutschland e.V., and American organizations, The Kate Foundation for Rett Syndrome Research, Girl Power 2 Cure, Eva Fini Fund at RSRT, Rocky Mountain Rett Association and the New Jersey Rett Syndrome Association.

Original press release:http://www.eurekalert.org/pub_releases/2013-06/rsrt-trs061613.php