Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts | News Archive July 5, 2013

 
Newborn neuron in the brain of an adult mouse. Haikun Liu,
German Cancer Research Center






WHO Child Growth Charts

 

 

 

Exercise rescues mutated neural stem cells

CHARGE syndrome* is a severe developmental disorder affecting multiple organs. It affects 1 in 8500 newborns worldwide. The majority of patients carry a mutation in a gene called CHD7. How this single mutation leads to the broad spectrum of characteristic CHARGE symptoms has been a mystery.

CHD7 encodes a so-called chromatin remodeler, an important class of epigenetic regulators. DNA is wound around bead-like nucleosomes consisting of histone proteins. The string of beads is then twisted into a structure called chromatin. The more nucleosomes that occupy a gene, the less active it is. Chromatin remodelers like CHD7 are essential for the regulation of gene activity because they create nucleosome-free regions in the regulatory sequences of genes. Thus, a mutation in a gene coding for a chromatin remodeler may lead to a wide pattern of misregulated genes.

Dr. Haikun Liu's lab at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is interested in the regulation of adult neural stem cells. The scientists have a particular focus on the role adult neural stem cells play in human diseases, including mental retardation and brain tumors. CHARGE patients suffer from mental retardation and learning disabilities, strongly suggesting that a central nervous defect underlies the disease.

To understand the molecular role of the CHD7 mutation in the CHARGE phenotype, the researchers created a model using genetically modified mice. These animals permit the scientists to switch off the CHD7 gene uniquely in neural stem cells at specific developmental stages. This permitted the scientists to follow how CHD7-deficient cells proliferate, differentiate and mature over the entire lifespan of the animal.


The work led to an exciting finding: by switching off CHD7 in either fetal or adult neural stem cells, the scientists observed that the mutant cells behaved in a common way: They could not efficiently differentiate into mature neurons, which are the basic functional unit in the brains of humans and other animals. Mature neurons normally have a very complex morphology, allowing them to create networks in the brain which are important for processing information. Neurons with the mutant form of CHD7, however, seem to be incapable of forming networks.

Most strikingly, Liu and colleagues found that exercise fully rescued this phenotype in the hippocampus, the core region of the brain responsible for learning and memory. They allowed the CHD7 deficient animals to exercise on a running wheel, which rodents love to do. After the running exercise the CHD7 mutant neurons were fully rescued: They were able to create functioning networks.


That running causes a dramatic increase in neurogenesis in adults has been confirmed in animals and humans. "We were extremely excited to see that the CHD7 deficiency in a cell can be bypassed via an unknown mechanism provoked by exercise involving running. Now, we are eagerly working to find the underlying mechanism," says Haikun Liu. The neuroscientist believes this discovery will lead to a better understanding of the disease, possibly even pointing to a way to reactivate the CHD7 pathway and thus to attenuate CHARGE symptoms in human patients.

CHD7 is also an important cancer-related gene; many different types of human cancers, including lung cancer, colon cancer and brain tumors exhibit mutations in the molecule. The mechanism identified here provides a clear explanation: A mutation in CHD7 leads to a blockage of differentiation in stem cells, which is a major cause of tumorigenesis.

In addition, CHD7 has been identified as a high-risk gene in human autism, and many CHARGE patients are autistic. It seems that the gene is important in the regulation of many more physiological processes in the body. By analogy to the neural stem cell study, the DKFZ researchers will now use their advanced mouse model to investigate CHD7's role in other types of cells.

*CHARGE: Coloboma of the eye, Heart defects, Atresia of the choanae, severe Retardation of growth and development, Genital abnormalities, and Ear abnormalities

Weijung Feng, Muhammad Amir Khan, Pablo Bellvis, Zhe Zhu, Olga Bernhardt, Christel Herold-Mende und Haikun Liu: The Chromatin Remodeller CHD7 regulates Neurogenesis via Activation of SoxC Transcription Factors. Cell Stem Cell 2013, DOI: 10.1016/j.stem.2013.05.002

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg, where promising approaches from cancer research are translated into the clinic. In the German Consortium for Translational Cancer Research (DKTK), one of six German Centers for Health Research, DKFZ maintains translational centers at seven university partnering sites. Combining excellent university hospitals with high-profile research at a Helmholtz Center is an important contribution to improving the chances of cancer patients. DKFZ is a member of the Helmholtz Association of National Research Centers, with ninety percent of its funding coming from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Original press release:http://www.dkfz.de/en/presse/pressemitteilungen/2013/dkfz-pm-13-40-Exercise-rescues-mutated-neural-stem-cells.php