Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts | News Archive July 12, 2013

 

Inner ear hair

These are stem-cell-derived sensory hair cells (in red) with hair bundles (green)
from research by Eri Hashino and Karl Koehler at Indiana University School
of Medicine. Cellular nuclei are shown in blue.

Credit: Indiana University






WHO Child Growth Charts

 

 

 

Inner ear created from stem cells

Indiana University scientists have transformed mouse embryonic stem cells into key structures of the inner ear.

The discovery provides new insights into the sensory organ's developmental process and sets the stage for laboratory models of disease, drug discovery and potential treatments for hearing loss and balance disorders.

A research team led by Eri Hashino, Ph.D., Ruth C. Holton Professor of Otolaryngology at Indiana University School of Medicine, reported that by using a three-dimensional cell culture method, they were able to coax stem cells to develop into inner-ear sensory epithelia — containing hair cells, supporting cells and neurons — that detect sound, head movements and gravity. The research was reportedly online Wednesday in the journal Nature.


Previous attempts to "grow" inner-ear hair cells in standard cell culture systems have worked poorly in part because necessary cues to develop hair bundles — a hallmark of sensory hair cells and a structure critically important for detecting auditory or vestibular signals — are lacking in the flat cell-culture dish.

But, Dr. Hashino said, the team determined that the cells needed to be suspended as aggregates in a specialized culture medium, which provided an environment more like that found in the body during early development.


The team mimicked the early development process with a precisely timed use of several small molecules that prompted the stem cells to differentiate, from one stage to the next, into precursors of the inner ear. But the three-dimensional suspension also provided important mechanical cues, such as the tension from the pull of cells on each other, said Karl R. Koehler, B.A., the paper's first author and a graduate student in the medical neuroscience graduate program at the IU School of Medicine.

"The three-dimensional culture allows the cells to self-organize into complex tissues using mechanical cues that are found during embryonic development," Koehler said.

"We were surprised to see that once stem cells are guided to become inner-ear precursors and placed in 3-D culture, these cells behave as if they knew not only how to become different cell types in the inner ear, but also how to self-organize into a pattern remarkably similar to the native inner ear," Dr. Hashino said. "Our initial goal was to make inner-ear precursors in culture, but when we did testing we found thousands of hair cells in a culture dish."


Electrophysiology testing further proved that those hair cells generated from stem cells were functional, and were the type that sense gravity and motion.

Moreover, neurons like those that normally link the inner-ear cells to the brain had also developed in the cell culture and were connected to the hair cells.

Additional research is needed to determine how inner-ear cells involved in auditory sensing might be developed, as well as how these processes can be applied to develop human inner-ear cells, the researchers said.


However, the work opens a door to better understanding of the inner-ear development process as well as creation of models for new drug development or cellular therapy to treat inner-ear disorders, they said.

Additional researchers involved in the work were Andrew M. Mikosz, B.S., Andrei I. Molosh, Ph.D., and Dharmeshkumar Patel, Ph.D., of Indiana University School of Medicine.

Support for the research was provided by National Institutes of Health grants RC1DC010706, R01GM086544 and R01MH52619, a Paul and Carole Stark Neurosciences Fellowship and an Indiana Clinical and Translational Sciences Institute Predoctoral Fellowship (NIH TL1RR025759).

Original press release:http://www.eurekalert.org/pub_releases/2013-07/iu-irc070913.php