Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts | News Archive July 22, 2013

 

admirin their work

Dosage compensation: A male lifeline

“This is the last step in these signaling pathways that makes the ultimate regulatory decision about whether to turn on a gene or keep it off,” says Erica Larschan, right,
with graduate students Marcela Soruco, left, and Jessica Chery.

Credit: Mike Cohea/Brown University






WHO Child Growth Charts

 

 

 

Newly found CLAMP protein regulates genes

A newly discovered protein, found in many species, turns out to be the missing link allowing regulation of a complex that operates the lone X chromosome of male fruit flies — bringing them to parity with females. Called CLAMP, the protein is a model of how regulatory protein complexes find their targets.

They say a good man is hard to find. Were it not for the CLAMP protein, the X chromosome of a male fruit fly could never be found by a gene-regulating complex that allows the male fly to develop and survive.

And that case is just one example of what this new finding means. More generally, the research provides biologists with a model of how proteins that govern gene transcription find their targets on chromosomes, a process that’s essential to healthy cell function and sometimes implicated in disease.

The new protein, dubbed CLAMP by the Brown University scientists who led the discovery, is found in many species including humans.


In fly embryos it turns out to be the missing link that brings together the X chromosome and the transcription complex MSL, which doubles the expression of the chromosome. That process, called dosage compensation, brings male flies up to parity with females who have two X chromosomes (in mammals, a similar process downgrades one of the female Xs to ensure parity).

In fact, MSL stands for “male-specific lethal” because without it, and without CLAMP, the male flies would die.


Scientists have long puzzled over how MSL and the X chromosome came together, said Erica Larschan, assistant professor of biology in the Department of Molecular Biology, Cellular Biology and Biochemistry and corresponding author. In fact, she said, they’ve lacked that understanding about many such interactions in which regulatory complexes govern the expression of genes in chromosomes.

The study was published online July 15 in the journal Genes and Development.

“This is the last step of these signaling pathways that make the ultimate regulatory decision about whether you are going to turn on a gene or keep it off at a particular time,” Larschan said. “It’s exciting because this protein has never been studied before.”

In the new paper, Larschan, graduate students Marcela Soruco and Jessica Chery, and their team of collaborators describe several experiments that demonstrate how CLAMP binds to key sites on the X chromosome and then brings in MSL to those sites to do its work. They first turned up the protein in a wide sweep of the fly genome published last year. They were looking for possible missing link candidates, but hadn’t yet figured out from the more than 100 they found which ones were genuinely promising. That process took years more work.


As they began to look more closely at CLAMP, they recognized that it has seven zinc ion-tipped “fingers” for grabbing, or clamping, onto DNA. They also noticed it also has a configuration elsewhere that seemed made for binding to a large protein complex.

In their experiments, both in flies and on the lab bench, they show that CLAMP binds DNA at specific sites known to be relevant for MSL’s interaction with the X chromosome. They also showed that interfering with CLAMP prevents MSL from finding the X chromosome.


Positive feedback loop

Then they found something that amazed them. Rather than acting simply as an intermediate link, CLAMP works together with MSL to create a self-reinforcing feedback loop of activity at the X chromosome.

“That was a really big surprise,” Larschan said. “I did those experiments myself. I kept doing it again and again because I was so surprised.”

One of the more telling analyses took advantage of the sex-specificity of the MSL complex. The researchers noticed that while CLAMP would bind to the X chromosome in both male and female flies, it would only progress past a certain degree in the males. The difference is that males have MSL and females don’t.


What the researchers determined is that as a male fly embryo develops, CLAMP binds to initial sites on the chromosome — facilitating assembly of MSL. Then, MSL opens up the coiled DNA exposing more sites to CLAMP, bringing in more MSL.

The ability to instigate this positive feedback loop, could prove therapeutic in diseases where a regulatory complex and its linking protein are not operating properly — perhaps correctable through the introduction of a synthetic small molecule.

“You could theoretically maintain those domains if they were misregulated.”

Erica Larschan, assistant professor of biology in the Department of Molecular Biology, Cellular Biology and Biochemistry


In addition to Larschan, Soruco and Chery, other Brown authors on the paper are Alexander Leydon, Arthur Sugden, Karen Goebel, Jessica Feng, and Peng Xia. Other authors are Eric Bishop, Michael Tolstorukov, and Peter Park of Harvard Medical School; and Tervor Siggers, Anastasia Vedenko, and Martha Bulyk of Brigham and Women’s Hospital and Harvard.

The research received support from the National Institutes of Health (grant: GM098461-01), The Pew Biomedical Scholars Program, the National Science Foundation, the Rhode Island Foundation, and a Brown University Salomon grant. The team performed gene sequencing work at the Brown Universty Center for Genomics and Proteomics.

Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews.

Original press release:https://news.brown.edu/pressreleases/2013/07/clamp