Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts | News Archive July 25, 2013

 

A single mitochondria diagrammed

Mitochondrial disease can widely vary in effects and severity in different tissues,
ranging from blindness to exercise intolerance to death, often wreaking
progressive havoc over time in both children and adults.

Now, a cholesterol-lowering drug called probuco has restored kidney function
in a mouse model using a form of vitamin B3, nicotinic acid. Like probucol,
nicotinic acid is known to stimulate the PPAR signaling pathway.
Nicotinic acid was added to a fibroblast cell line grown from the skin of a patient
with the mitochondrial disease Leigh syndrome that causes strokes in young children.

The nicotinic acid normalized signaling activity,
and improved the cells' ability to use oxygen.






WHO Child Growth Charts

 

 

 

Central signaling found in mitochondrial diseases

Researchers have identified a master network of signaling molecules that acts like a "fuse box" to regulate the cellular effects of defective energy flow in mitochondrial respiratory chain diseases—a diverse set of difficult-to-treat genetic-based energy disorders.

Using the new knowledge, researchers showed that nicotinic acid, a form of vitamin B3, partially restores normal functioning in cells taken from patients with mitochondrial disease.

The study, from The Children's Hospital of Philadelphia (CHOP), suggests that the regulatory signaling network may offer a common avenue to target in the developing effective, personalized treatments for many mitochondrial energy disorders.


Mitochondria are tiny biological structures that act as cellular power plants, extracting energy from nutrients to drive the body. When mitochondria malfunction, they may impair the function of potentially any organ throughout the body, in an often bewildering variety of ways.

Mitochondrial disease can have widely varying effects and severity in different tissues, ranging from blindness to exercise intolerance to death, often wreaking progressive havoc over time in both children and adults.


"Finding a common cellular response reveals that some order exists in the chaos of these basic energy diseases," said study leader Marni J. Falk, M.D., director and attending physician in the Mitochondrial-Genetic Disease Clinic at CHOP. "Identifying the central factors regulating manifestations of mitochondrial disease is like troubleshooting a household electrical system: instead of analyzing problems that may occur at each individual light bulb or switch plate, we have located a central problem in the fuse box."

Falk and colleagues published their study today in the journal PLOS ONE.

Primary mitochondrial diseases directly interfere with the function of the respiratory chain (RC)—the highly conserved sequence of chemical reactions within mitochondria that generate energy from oxygen and nutrients.

"There are hundreds of different individual reasons for RC malfunction," said Falk, "but we identified a common cellular response—an integrated, nutrient-sensing signaling network—that recognizes when energy flow is impaired. That response alters a host of biological pathways, and in many tissues, those secondary biochemical changes are actually contributing to the symptoms of disease."

RC malfunction in mitochondrial disease may cause symptoms such as seizures, strokes, blindness, heart disease, progressive muscle weakness, or vulnerability to infections, among other problems. No cure exists, and most current treatments for RC diseases are largely ineffective.

In the current study, Falk and colleagues analyzed cellular responses in human skeletal muscle and skin cell lines, finding that RC disease disrupted crucial biological pathways controlled by a handful of master signaling factors: FOXO, PPAR, sirtuins, AMPK, and mTORC1. All of these factors are integral components of cellular signaling networks that sense nutrient availability and regulate growth.

Falk: "The good news in our research is that the signaling pathways regulating the body's response to mitochondrial disease are already well-known for other reasons. Using an agent that restores their collective activity toward more normal functioning offers potential treatments for the diverse symptoms of mitochondrial RC disease."


Building on her team's previous animal studies, showing that a cholesterol-lowering drug called probucol restored kidney function in a mouse model of an RC defect, Falk and colleagues used X a form of vitamin B3, nicotinic acid, in their current study. Like probucol, nicotinic acid is known to stimulate the PPAR signaling pathway. Here, they added nicotinic acid to a fibroblast cell line grown from the skin of a patient with the mitochondrial disease known as Leigh syndrome that causes strokes in young children.

The results, said Falk, were exciting. The nicotinic acid normalized signaling activity not just in PPAR, but across an integrated signaling network, and also improved overall cellular respiration—the cells' ability to use oxygen.


Falk: "Even though the underlying genetic defect in RC function persisted, we were able to reverse some of its major deleterious downstream effects on crucial cellular functions that are impaired in many varieties of mitochondrial disease."

Falk cautioned that much work remains to be done, including studies in animal models, to determine if this discovery in patient tissues and cell culture may lead to effective clinical treatments. But, she added, "finding a central signaling mechanism common to highly diverse RC disease should allow researchers to better classify subtle differences in this signaling response to understand subtypes mitochondrial disease and fashion personalized treatments that restore specific signaling alterations identified in individual patients."

Abstract
Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease.

Support for this study came from the National Institutes of Health (grants DK082446, HD026979 and RR024134), the Angelina Foundation Fund from the Division of Child Development and Metabolic Disease at The Children's Hospital of Philadelphia, the Tristan Mullen Fund, and The Children's Hospital of Philadelphia Research Institute Bridge Fund.

Falk's co-authors were from Children's Hospital, the Perelman School of Medicine at the University of Pennsylvania, Harvard Medical School, and the University of California San Diego.

"Primary respiratory chain disease causes tissue-specific dysregulation of the global transcriptome and nutrient-sensing signaling network," PLOS ONE, published online July 24, 2013. http://dx.plos.org/10.1371/journal.pone.0069282

About The Children's Hospital of Philadelphia
The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program receives the highest amount of National Institutes of Health funding among all U.S. children's hospitals. In addition, its unique family-centered care and public service programs have brought the 527-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.

Original press release: