Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Aug 6, 2013

 

As a mammal, mice have an impressive amount of gene variation proving
gene-regulation activity—more than found amongst fruit fly species.






WHO Child Growth Charts

 

 

 

Lowly mouse reveals the first steps in evolution

A study of gene expression led by scientists at the EMBL-European Bioinformatics Institute (EMBL-EBI) and the University of Cambridge has revealed the first steps of evolution in gene regulation in mice.

Published in the journal Cell, the research has implications for the study of differences in gene regulation between people.

“We found an impressive amount of variation between these apparently very similar mice in terms of transcription-factor binding, which is an important indicator of gene-regulation activity,” says Paul Flicek of EMBL-EBI. “Often you’ll see a specific combination of these transcription factors acting in concert – and it was fascinating for us to see just how important these combinations are. They’re much more likely to be conserved over the course of evolution than whatever DNA sequence they might be binding to.”


The team studied gene expression in five very closely related mouse species in order to pinpoint changes at the very earliest stages of evolution. To do this, they compared the way that three transcription factors (TFs) bind to genes to control if they’re turned on or off in liver cells in the different mouse species.


“By looking at mice that are very closely related to each other, we were able to capture a snapshot of what regulatory evolution is happening,” explains Duncan Odom of the University of Cambridge. “That’s important because it’s much harder to see how something has evolved when you don’t have a clear picture of the starting point.”


Say you wanted to know how an orange tree evolved, but you could only compare it to an elm or oak. You’d have greater insight into how an orange tree evolved if you could compare it to much more closely related plants like grapefruit and lemons, which could give insight into how each came from an ancestral citrus plant.

In this study, instead of comparing leaf and fruit shapes, the team looked at gene regulation in mice that had only recently diverged from one another. They demonstrated that TFs work in clusters that are conserved in order to ensure genetic and evolutionary stability.


The researchers contrasted their findings with gene-regulation data from another model organism, Drosophila, to see where the similarities lay. They found that there were a lot more differences between closely related mouse strains than there are between distantly related fruit-fly strains.

“Mammals have lots of DNA kicking around that doesn’t code for proteins, while fruit flies have relatively little. So a mouse’s regulatory wiring will just have a lot more wiggle room than a fruit fly’s,” says Paul. “That gives us a clearer picture of what we can expect to learn about mammalian genetic regulation from fruit flies.”

The study could help scientists understand how gene regulation differs from one person to the next, explaining why genes that cause disease in some people don’t have that effect in others.

Summary
To mechanistically characterize the microevolutionary processes active in altering transcription factor (TF) binding among closely related mammals, we compared the genome-wide binding of three tissue-specific TFs that control liver gene expression in six rodents. Despite an overall fast turnover of TF binding locations between species, we identified thousands of TF regions of highly constrained TF binding intensity. Although individual mutations in bound sequence motifs can influence TF binding, most binding differences occur in the absence of nearby sequence variations. Instead, combinatorial binding was found to be significant for genetic and evolutionary stability; cobound TFs tend to disappear in concert and were sensitive to genetic knockout of partner TFs. The large, qualitative differences in genomic regions bound between closely related mammals, when contrasted with the smaller, quantitative TF binding differences among Drosophila species, illustrate how genome structure and population genetics together shape regulatory evolution.

Source article
Stefflova, K., Thybert, D. et al. (2013)Cooperativity and rapid evolution of co-bound transcription factors in closely related mammals. Cell, 1 August 2013. DOI: 10.1016/j.cell.2013.07.007

Original press release:http://www.eurekalert.org/pub_releases/2013-08/embl-wfc080213.php