Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Aug 6, 2013

 

A computer program sorted mRNA strips retaining introns from those which did not. Using this technique, molecular biologists found that mRNA strips— from many dozens of genes involved in white blood cell function—were prone to intron retention, and breaking down.






WHO Child Growth Charts

 

 

 

How "junk DNA" can control cell development

Far from being “junk,” the 97 per cent of human DNA that does not encode instructions for making proteins can play a significant role in controlling cell development.

And in doing so, the researchers from the Gene and Stem Cell Therapy Program at Sydney’s Centenary Institute, have unravelled a previously unknown mechanism for regulating the activity of genes, increasing our understanding of the way cells develop and opening the way to new possibilities for therapy.

Using the latest gene sequencing techniques and sophisticated computer analysis, a research group led by Professor John Rasko AO and including Centenary’s Head of Bioinformatics, Dr William Ritchie, has shown how particular white blood cells use non-coding DNA to regulate the activity of a group of genes that determines their shape and function. The work is published today in the scientific journal Cell.

“This discovery, involving what was previously referred to as “junk”, opens up a new level of gene expression control that could also play a role in the development of many other tissue types,” Rasko says. “Our observations were quite surprising and they open entirely new avenues for potential treatments in diverse diseases including cancers and leukaemias.”


The researchers reached their conclusions through studying introns—non-coding sequences which are located inside genes.


As part of the normal process of generating proteins from DNA, the code for constructing a particular protein is printed off as a strip of genetic material known as messenger RNA (mRNA). It is this strip of mRNA which carries the instructions for making the protein from the gene in the nucleus to the protein factories or ribosomes in the body of the cell.

But these mRNA strips need to be processed before they can be used as protein blueprints. Typically, any non-coding introns must be cut out to produce the final sequence for a functional protein. Many of the introns also include a short sequence—known as the stop codon—which, if left in, stops protein construction altogether. Retention of the intron can also stimulate a cellular mechanism which breaks up the mRNA containing it.

Dr Ritchie was able to develop a computer program to sort out mRNA strips retaining introns from those which did not. Using this technique the lead molecular biologist of the team, Dr Justin Wong, found that mRNA strips from many dozens of genes involved in white blood cell function were prone to intron retention and consequent break down. This was related to the levels of the enzymes needed to chop out the intron.


Unless the intron is excised, functional protein products are never produced from genes.


Dr Jeff Holst in the team went a step further to show how this mechanism works in living bone marrow.

So the researchers propose intron retention as an efficient means of controlling the activity of many genes. “In fact, it takes less energy to break up strips of mRNA, than to control gene activity in other ways,” says Rasko. “This may well be a previously-overlooked general mechanism for gene regulation with implications for disease causation and possible therapies in the future.”

Abstract
Intron retention (IR) is widely recognized as a consequence of mis-splicing that leads to failed excision of intronic sequences from pre-messenger RNAs. Our bioinformatic analyses of transcriptomic and proteomic data of normal white blood cell differentiation reveal IR as a physiological mechanism of gene expression control. IR regulates the expression of 86 functionally related genes, including those that determine the nuclear shape that is unique to granulocytes. Retention of introns in specific genes is associated with downregulation of splicing factors and higher GC content. IR, conserved between human and mouse, led to reduced mRNA and protein levels by triggering the nonsense-mediated decay (NMD) pathway. In contrast to the prevalent view that NMD is limited to mRNAs encoding aberrant proteins, our data establish that IR coupled with NMD is a conserved mechanism in normal granulopoiesis. Physiological IR may provide an energetically favorable level of dynamic gene expression control prior to sustained gene translation.

About the Centenary Institute
The Centenary Institute is an independent leader in medical research seeking improved treatments and cures for cancer, cardiovascular and infectious diseases.

We are working to discover new prevention, early diagnosis and treatment options to enable each generation to live longer, healthier lives than the one before.

Centenary’s affiliation with the RPA Hospital and the University of Sydney means that our discoveries can be quickly applied to the fight against disease in the clinic.

Original press release: http://www.scienceinpublic.com.au/centenary/junkdna