Welcome to The Visible Embryo

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

 

Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Oct 7, 2013

 

A breast cancer metastasis cell (pink), lodges in the mesenchyma stroma,
in time approaching other sites through blood vessels.
This cell survives in the bone marrow environment (metatasis)
due to molecular patterns similar to those found in bone,
factors identified by HHMI research.

Image Credit: Xin Jin, MSKCC






WHO Child Growth Charts

 

 

 

Bad to the Bone: How Some Breast Cancer Cells Thrive

Some breast cancer cells have a leg up on survival—the genes they express make them more likely to spread and prosper in bone tissue.


Highlights

Tumors spread—or metastasize—when cells from a primary tumor break off and invade another organ.

In earlier work, HHMI researchers studying the genetics of breast cancer cells, found they could predict which cancer cells were most likely to spread into bone.

Now, they have found that breast cancers can turn on certain genes that increase their chance of survival if they spread to bone.


When a cancer cell sloughs off the edge of a tumor in the breast, it faces a tough road to survive. The cell must not only remain physically intact as it rushes through blood vessels, but it also must find a new organ to lodge itself in, take in enough nutrients and oxygen to stay alive, and begin dividing, all while escaping notice by the body’s immune system.

A team of Howard Hughes Medical Institute (HHMI) scientists has discovered that some loose breast cancer cells, have a leg up on survival—the genes they express make them more likely to prosper in bone tissue. The team also found that whether or not cancer cells turn on those genes depends on what their surroundings were like in the primary breast tumor. If the breast tumor had molecular patterns similar to those found in bone, the tumor is more likely to spread to bone later.

“It’s like in society—who you hang out with shapes who you are,” says HHMI investigator Joan Massagué of Memorial Sloan-Kettering Cancer Center. “And that might make you better or worse equipped to handle situations you’ll encounter.”

The new findings, published August 29, 2013 in the journal Cell, could eventually lead to new drugs that block cancers from spreading to bone or other organs, he says.

When cells from a primary tumor circulate through the body and begin growing in a new organ, a metastatic tumor is formed. Such metastases are often harder to treat than primary tumors; the vast majority of people who die of cancer have not only a primary tumor but also metastatic disease. So a major goal of cancer researchers is to not only find ways to treat primary tumors, but stop cancer from metastasizing.


Massagué’s lab group discovered in 2009 that by looking at the genetics of breast cancer cells, they could predict which were most likely to spread to bone.

A set of genes dubbed the Src response signature (SRS) was more often turned on in the cells that metastasized to the bone. But the researchers didn’t know why.


“What was really a conundrum was how this pathway got turned on in the first place,” says Massagué. “Because SRS didn’t confer any survival benefit to cells in the primary tumor. We were really at a loss for clues.”


So Massagué and colleagues took another look at breast tumors that had SRS turned on. They tested whether there were any other genes, outside the known SRS pathway, that were always turned up on down in the same cells. They homed in on two—CXCL12 and IGF1—that were not only found to be more highly expressed in tumors with SRS, but were also independently predictive of which tumors would migrate to the bone.

Tumors with both genes turned up were more likely to lead to bone metastases.

But in the breast tumors with high levels of CXCL12 and IGF1, the researchers found, the genes weren’t originating from cancer cells. Tumors consist of not only cancerous cells, but also other supporting cells that are integrated into the tumors’ structure. The gene signature, it turned out, was coming from noncancerous mesenchymal cells integrating into the breast tumor. And not only that, but CXCL12 and IGF1 were also known to be expressed by bone cells.

The genes, in both cases, encoded signaling molecules called cytokines.


“This was the eureka moment,” says Massagué. “We realized there was mimicry between the environment of a primary tumor, and the environment of their preferred organ of metastasis.”

Biochemical experiments revealed that when the mesenchymal cells supporting a tumor have CXCL12 and IGF1 turned on, and produce lots of cytokines, nearby cancer cells are selected for SRS activation. The SRS gene signature, while it doesn’t significantly change primary breast tumor growth, makes cancerous cells slightly more sensitive to the cytokines produced by the mesenchymal cells. Then, because they are more sensitive to these cytokines, if the cells end up in bone tissue that expresses higher levels of the same cytokines, they will grow more aggressively.

“For any cancer cell, it’s dreadfully rough to survive in the body after leaving a tumor,” says Massagué. “These cells selected for being more responsive to cytokines might just have this tiny extra chance of surviving in bone, but when you’re talking about tens of thousands of cancer cells circulating in the body per day, that tiny extra chance is enough to change the odds of a metastatic tumor forming.”


Although the study was designed to look specifically at how breast cancer cells gain the ability to better survive in bone, Massagué thinks the overall conclusion—that the environment of a primary tumor can give cancer cells varied abilities to lodge in other organs—likely applies to other cancer types and metastasis sites as well.


Now, Massagué and his colleagues are following up on how the phenomenon might play out in other organs. They are also testing whether drugs affecting the SRS pathway—and how cells respond to cytokines—could make cancers less likely to spread to the bone. In mice, they’ve found that such drugs are effective at preventing metastasis, even though these drugs had previously failed at treating metastatic tumors that have already developed. Preventing metastasis therefore is the goal.

Abstract Highlights
The primary tumor stroma can determine organ-specific metastatic tropism
CAFs in breast tumors select for bone metastatic cells
CAF-rich tumors mimic the CXCL12-rich microenvironment of the bone marrow
CAF-derived CXCL12 and IGF1 select for high Src activity, a bone metastatic trait
Summary

How organ-specific metastatic traits arise in primary tumors remains unknown. Here, we show a role of the breast tumor stroma in selecting cancer cells that are primed for metastasis in bone. Cancer-associated fibroblasts (CAFs) in triple-negative (TN) breast tumors skew heterogeneous cancer cell populations toward a predominance of clones that thrive on the CAF-derived factors CXCL12 and IGF1. Limiting concentrations of these factors select for cancer cells with high Src activity, a known clinical predictor of bone relapse and an enhancer of PI3K-Akt pathway activation by CXCL12 and IGF1. Carcinoma clones selected in this manner are primed for metastasis in the CXCL12-rich microenvironment of the bone marrow. The evidence suggests that stromal signals resembling those of a distant organ select for cancer cells that are primed for metastasis in that organ, thus illuminating the evolution of metastatic traits in a primary tumor and its distant metastases.

Original press releas:http://www.hhmi.org/news/bad-bone-some-breast-cancer-cells-are-primed-thrive