Welcome to The Visible Embryo  

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

 

Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Oct 9, 2013

 

“In instances such as pandemic flu or the corona-virus that has erupted in the Middle East, it’s extremely important to diagnose a viral illness far more accurately and speedier than can be done using traditional diagnostics,” said co-senior author Geoffrey S. Ginsburg, M.D., Ph.D.








WHO Child Growth Charts

 

 

 

Genomic test sorts viral vs. bacterial infection

A blood test developed by researchers at Duke Medicine shows more than 90-percent accuracy distinguishing between viral and bacterial infection in respiratory illnesses.

The test, which detects a specific genetic “signature” that the sick person’s immune system expresses as a response to the virus, demonstrates a potential new method for diagnosing the source of illnesses that have long been tough to pinpoint.

Reported in the Sept. 18, 2013, issue of the journal Science Translational Medicine, the finding moves the technology closer to clinical use, where it could help patients get quicker diagnoses and treatments, while curbing the unnecessary use of antibiotics that don’t work on viral infections.

“In instances such as pandemic flu or the corona-virus that has erupted in the Middle East, it’s extremely important to diagnose a viral illness far more accurately and speedier than can be done using traditional diagnostics,” said co-senior author Geoffrey S. Ginsburg, M.D., Ph.D., director of Genomic Medicine and professor of medicine at Duke University School of Medicine. “Current tests require knowledge of the pathogen to confirm infection, because they are strain-specific. But our test could be used right away when a new, unknown pathogen emerges.”

When infected by a virus, a person’s immune system responds differently than when fighting a bacterial infection. These differences are evident at the genetic level, where certain genes are switched on during a viral attack, creating a fingerprint that broadly identifies the culpable pathogen.


In previous work, the Duke team described the development of a blood test, using a special assay, to identify some 30 genes involved in the immune response to viral infection among volunteers who had agreed to be infected with a series of common upper respiratory viruses.


Unlike current tests that rely on evidence of the pathogen in the blood stream – requiring knowledge of that particular bug to detect it – the new approach could be used to detect unknown emerging diseases, including potential bioterrorism threats.

“This is important not only in viral pandemics where infection may be caused by unknown viruses but also in routine care where the decision to treat or not with antibiotics is paramount,” said lead author Aimee K. Zaas, M.D., MHS, associate professor of infectious diseases and international health at Duke.

The current study was a trial run of the blood test in a “real-world” setting. Among 102 people arriving at a hospital’s emergency department with fever, 28 had a viral infection, 39 had a bacterial infection and 35 were healthy controls. Using the test, the Duke researchers were able to accurately classify more than 90 percent of the patients as having viral infection or not.

The assay provided true positive identifications of viral infection in 89 percent of the cases, and correctly ruled out the negative cases 94 percent of the time. The researchers said larger studies are planned, and additional work is ongoing to trim the amount of time it takes for the test results to be reported.

Ginsburg pointed out that the test currently takes 12 hours to analyze about 30 genes. He feels both the time and number of genes could be pared down.


“We were very pleased that the assay could pick out those with viral infection with a high degree of accuracy. This is perhaps the most important aspect of this effort – the accuracy of the new test in a real-world setting. It is a major step forward in the test becoming a useful diagnostic to help physicians and patients.”

Zaas said


Co-senior author Christopher W. Woods, M.D., MPH, associate professor of medicine, pathology and global health at Duke and the Durham VA Medical Center, said the new test, if proven successful in additional studies, could help resolve some of the most pressing issues around infectious diseases.


“One of the big global threats at the moment is the emergence of bacterial resistance, and that is largely driven by overuse of antibiotics. This is a growing public health threat, creating infections that are increasingly difficult to manage. A tool that enables us to accurately identify viral infections could curb the indiscriminate use of antibiotics and reduce the development of resistant pathogens.”

Woods said


Abstract
Improved ways to diagnose acute respiratory viral infections could decrease inappropriate antibacterial use and serve as a vital triage mechanism in the event of a potential viral pandemic. Measurement of the host response to infection is an alternative to pathogen-based diagnostic testing and may improve diagnostic accuracy. We have developed a host-based assay with a reverse transcription polymerase chain reaction (RT-PCR) TaqMan low-density array (TLDA) platform for classifying respiratory viral infection. We developed the assay using two cohorts experimentally infected with influenza A H3N2/Wisconsin or influenza A H1N1/Brisbane, and validated the assay in a sample of adults presenting to the emergency department with fever (n = 102) and in healthy volunteers (n = 41). Peripheral blood RNA samples were obtained from individuals who underwent experimental viral challenge or who presented to the emergency department and had microbiologically proven viral respiratory infection or systemic bacterial infection. The selected gene set on the RT-PCR TLDA assay classified participants with experimentally induced influenza H3N2 and H1N1 infection with 100 and 87% accuracy, respectively. We validated this host gene expression signature in a cohort of 102 individuals arriving at the emergency department. The sensitivity of the RT-PCR test was 89% [95% confidence interval (CI), 72 to 98%], and the specificity was 94% (95% CI, 86 to 99%). These results show that RT-PCR–based detection of a host gene expression signature can classify individuals with respiratory viral infection and sets the stage for prospective evaluation of this diagnostic approach in a clinical setting.

Copyright © 2013, American Association for the Advancement of Science

In addition to Ginsburg, Zaas and Woods, study authors include Thomas Burke, Minhua Chen, Micah McClain, Bradly Nicholson, Timothy Veldman, Ephraim L. Tsalik, Vance Fowler, Emanuel P. Rivers, Ronny Otero, Stephen F. Kingsmore, Deepak Voora, Joseph Lucas, Alfred O. Hero, and Lawrence Carin.

The study was supported in part by the Defense Advanced Research Projects Agency, the National Institutes of Allergy and Infectious Diseases (AI066569), and the Department of Veterans Affairs.

Ginsburg, Zaas, Woods, Hero, Carin and Lucas have filed for a provisional patent on the respiratory viral signature. Fuller disclosures are provided in the study.

Original press releas: http://www.dukehealth.org/health_library/news/genomic-test-accurately-sorts-viral-vs-bacterial-infections