Welcome to The Visible Embryo

 

 

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

 

Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Oct 18, 2013

 

 







WHO Child Growth Charts

 

 

 

Rare gene mutation affects protein in brain development

Though worlds apart, four unrelated families have been united in a medical mystery over the source of a rare inherited disorder that results in their children being born with abnormal brain growth and severe functional impairments.

An international team of scientists, led by genetic researchers at Duke Medicine, has solved the case by identifying a recessive gene mutation that reduces the abundance of a certain protein that previously had not been known to affect brain development.


The gene mutation causes a defect in the body's synthesis of a nutrient called asparagine, which is found in meat, dairy and nuts, among other foods. Long considered a "non-essential" amino acid, asparagine synthesis may actually be crucial for normal brain development and function.


The findings appear in the Oct. 16, 2013, issue of the journal Neuron.

"This non-essential amino acid has different levels inside and outside the central nervous system, and it may be that in the central nervous system, it plays a critical role," said lead author David B. Goldstein, Ph.D., director of the Center for Human Genome Variation and professor of Molecular Genetics & Microbiology and professor of biology at Duke University School of Medicine. "What is exciting about this is if we can work out how it functions, a treatment might be asparagine supplementation in the diet."

Goldstein said the work on the rare disorder was launched after two separate families in Israel, both of Iranian Jewish ancestry, had children with similar impairments – small head circumference that grows progressively worse, accompanied by profound developmental delays and seizures.

Deducting that the families' ethnic heritage might help focus the gene quest, Goldstein and colleagues looked for gene variants that were shared by the two affected children from one of the families, but were uncommon in the general population. Of 72 such variants, three were absent in the larger population.

Of those three variants, one was also present in the child of the other family from Israel. This mutation was located in the asparagine synthetase gene, or ASNS, which controls the production of the metabolite asparagine from other amino acids.

Meanwhile, two other families – both in Canada – had children who were born with similar problems, and scientists there conducted analyses that pointed to mutations in the same ASNS genes.

In combining the cases, the researchers discovered that each of the parents in these four families shared a rare recessive trait that, by chance, combined to result in a newly identified disorder in their children. More cases are likely to come to light now that the gene mutation has been identified.


Goldstein said other similar deficiencies in amino acids synthesization — all causing neurological problems — have recently been identified. These conditions have shown improvement with the use of dietary supplements, suggesting that the impairments caused by the ASNS mutation might benefit from asparagine supplementation.

"An emerging theme is that with these 'non-essential' amino acids, their metabolism does matter. This metabolic pathway is important, and it may be that the amount of asparagine is the key to a buildup of toxin in that pathway caused by the mutation."

David B. Goldstein, Ph.D., director, Center for Human Genome Variation; professor, Molecular Genetics & Microbiology; and, professor, biology, Duke University School of Medicine


Goldstein said future research in mice bred to have a similar disorder could prove enlightening. Already, he said, experiments have shown that mice with ASNS mutations have a less severe form of the disorder, perhaps because they have higher levels of asparagine in their bloodstream. That insight, he said, adds hope to the prospect that dietary supplementation might diminish the impact of the mutation.

"We can now use these mice to investigate the appropriate quantities and timing of the asparagine dietary supplementation," said lead author Elizabeth Ruzzo. "Given that this is a developmental disorder it is possible that adjusting the mother's diet before she is even pregnant will be most effective."

Abstract Highlights
Recessive mutations in ASNS are responsible for a severe neurological condition
Two of the identified mutations lead to a remarkable depletion of the ASNS protein
Asns-deficient mice have structural brain abnormalities and memory deficits
Asparagine synthesis is essential for the development and function of the brain
Summary

We analyzed four families that presented with a similar condition characterized by congenital microcephaly, intellectual disability, progressive cerebral atrophy, and intractable seizures. We show that recessive mutations in the ASNS gene are responsible for this syndrome. Two of the identified missense mutations dramatically reduce ASNS protein abundance, suggesting that the mutations cause loss of function. Hypomorphic Asns mutant mice have structural brain abnormalities, including enlarged ventricles and reduced cortical thickness, and show deficits in learning and memory mimicking aspects of the patient phenotype. ASNS encodes asparagine synthetase, which catalyzes the synthesis of asparagine from glutamine and aspartate. The neurological impairment resulting from ASNS deficiency may be explained by asparagine depletion in the brain or by accumulation of aspartate/glutamate leading to enhanced excitability and neuronal damage. Our study thus indicates that asparagine synthesis is essential for the development and function of the brain but not for that of other organs.

In addition to Goldstein and Ruzzo, study authors from Duke include Hanqian Mao, Andrea L. Pappas, Yuki Hitomi, Yi-Fan Lu, Xiaodi Yao, Kimberly Pelak, Rasesh B. Joshi, Xiao-Ping He, Dipendra K. Aryal, Ramona M. Rodriguiz, Yong-hui Jiang, William C. Wetsel, James O. McNamara and Debra L. Silver.

Additional authors include José-Mario Capo-Chichi, Bruria Ben-Zeev, David Chitayat, Fadi F. Hamdan, Haike Reznik-Wolf, Ifat Bar-Joseph, Danit Oz-Levi, Dorit Lev, Tally Lerman-Sagie, Esther Leshinsky-Silver, Yair Anikster, Edna Ben-Asher, Tsviya Olender, Laurence Colleaux, Jean-Claude Décarie, Susan Blaser, Brenda Banwell, Lysanne Patry, Rachel J. Silver, Sylvia Dobrzeniecka, Mohammad S. Islam, Abul Hasnat, Mark E. Samuels, Guy A. Rouleau, Doron Lancet, Elon Pras, Grant A. Mitchell and Jacques L. Michaud.

The research was funded in part the Center for HIV/AIDS Vaccine Immunology ("CHAVI") under a grant from the National Institute of Allergy and Infectious Diseases (UO1AIO67854); the March of Dimes; and the Canadian Institutes of Health Research. Full funding support is listed in the published manuscript.

Original press releas:http://www.dukehealth.org/health_library/news/rare-gene-mutation-sheds-light-on-protein-s-role-in-brain-development