Welcome to The Visible Embryo

 

 

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

 

Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Nov 4, 2013

 

In the Rutgers autism study, 79 families – mostly from New Jersey and Pennsylvania – with one child with autism and at least one with specific language impairment underwent extensive in-home testing.







WHO Child Growth Charts

 

 

 

Autism and language impairment genetically linked

Rutgers University scientists also find strong evidence of a genetic connection in areas of social skills and repetitive behaviors

Lorenzo Miodus-Santini an 11-year-old sixth-grader from Princeton, who was classified as autistic at only 13 months old, was never a big talker. As an infant he didn't babble or coo. When he was a toddler beginning to speak, he would learn one word but forget another.

His older brother, Christian, a 15-year-old high school sophomore, shared some similar characteristics – difficulty with reading, processing words and speaking clearly. Doctors said he had language impairments but was not autistic.

New research published online today in the American Journal of Psychiatry, by scientists at Rutgers University and The Research Institute at Nationwide Children's Hospital in Ohio, reveals that there is a genetic link connecting family members with autism like Lorenzo Miodus-Santini to those like his brother, Christian, who have specific language impairment characterized by speech and language difficulties that can't be explained by cognitive or physical problems.

The research project leader Linda Brzustowicz, Rutgers professor and chair of the Department of Genetics, in the School of Arts and Sciences, says that genes in a narrow region of two chromosomes (15q23-26 and 16p12) responsible for oral and written language impairments can result in similar behavioral characteristics with one family member developing autism and the other having only language difficulties.


Specific language impairment is one of the most common learning disabilities, affecting an estimated 7 percent of children.

It is not considered to be an autism spectrum disorder.

Autism effects one in 88 children nationally – with nearly five times as many boys than girls diagnosed – about half of whom have some degree of language impairment.


"In this group of families we are trying to find genetic factors that might connect them," says Brzustowicz, who collaborated on the study with Christopher W. Bartell, principal investigator in the Battelle Center for Mathematical Medicine at Nationwide Children's Hospital. "This research is important because it is hard to understand autism until we find the genes that might be involved."

While scientists don't believe that there is one single gene that causes autism but rather a number of genes that increase the risk, Brzustowicz and her team of researchers are working to identify genetic patterns in these families in order to help gain a better understanding of the mechanisms that lead to autism, a developmental brain disorder that appears in the first three years of life.

In the Rutgers autism study, 79 families – mostly from New Jersey and Pennsylvania – with one child with autism and at least one with specific language impairment underwent extensive in-home testing. Besides taking blood samples for genetic testing, family members including parents, children, and grandparents and in some cases even uncles, aunts and cousins underwent a battery of tests to assess grammar, vocabulary and language processing.

"Our results indicate that there are shared patterns of DNA and visible behavioral characteristics across our group of study families," says Judy Flax, an associate research professor working on the study with Brzustowicz.


In addition to the language findings, researchers also found strong evidence of a genetic link in the areas of obsessive-compulsive, repetitive behaviors and social interaction skills, other symptoms associated with autism.

Brzustowicz says the next step will be to sequence the whole genome of those who participated in the study in order to compare the families to see if scientists can pinpoint any specific genes or mutations that are common to all.


It is part of a long-term collaboration between scientists from Rutgers and Nationwide Children's Hospital, as well as scientists, data experts and physicians from Rutgers, Saint Peter's University Hospital in New Brunswick and the Rutgers University Cell and DNA Repository (RUCDR).

Brzustowicz and her team have been studying the genetic influences of autism on families for the past decade – recently receiving a $2.2 million five-year grant from the state last year. They are opening the study to new families with autism as they continue the study over the next four years.

"This is just the beginning," says Brzustowicz. "We are finding evidence of genetic similarities with the hopes of being able to identify targets that might respond to pharmacological treatments."

Original press release:http://www.eurekalert.org/pub_releases/2013-10/ru-aal102913.php