Welcome to The Visible Embryo

 

 

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

 

Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Nov 4, 2013

 

Some babies in the experiment watched the experimenter use her hand to touch the toy.
Other babies in the experiment watched the experimenter use her foot to touch the toy..







WHO Child Growth Charts

 

 

 

Baby brains respond to another person's actions

Imitation may be the sincerest form of flattery for adults, but for babies it's the way they learn. As renowned people-watchers, babies observe others demonstrate how to do things and then copy their body movements.

It's how little ones know, usually without explicit instructions, to hold a toy phone to the ear or guide a spoon to the mouth. Now researchers from the University of Washington and Temple University have found the first evidence revealing a key aspect of the brain processing that occurs in babies to allow this learning by observation.

The findings, published online Oct. 30 by PLOS ONE, are the first to show that babies' brains showed specific activation patterns when an adult performed a task with different parts of her body. When 14-month-old babies simply watched an adult use her hand to touch a toy, the hand area of the baby's brain lit up. When another group of infants watched an adult touch the toy using only her foot, the foot area of the baby's brain showed more activity.

"Babies are exquisitely careful people-watchers, and they're primed to learn from others," said Andrew Meltzoff, co-author and co-director of the UW Institute for Learning & Brain Sciences. "And now we see that when babies watch someone else, it activates their own brains. This study is a first step in understanding the neuroscience of how babies learn through imitation."

The study took advantage of how the brain is organized. The sensory and motor area of the cortex, the outer portion of the brain known for its creased appearance, is arranged by body part with each area of the body represented in identifiable neural real estate. Prick your finger, stick out your tongue, or kick a ball and distinct areas of the brain light up according to a somatotopic map.


Other studies show that adults show this somatotopic brain activation while watching someone else use different body parts, suggesting that adults understand the actions of others in relation to their own bodies. The researchers wondered whether the same would be true in babies.


The 70 infants in the study wore electroencephalogram, or EEG, caps with embedded sensors that detected brain activity in the regions of the cortex that respond to movement or touch of the feet and hands. Sitting on a parent's lap, each baby watched as an experimenter touched a toy placed on a low table between the baby and the experimenter.

The toy had a clear plastic dome and was mounted on a sturdy base. When the experimenter pressed the dome with her hand or foot, music played and confetti in the dome spun. The experimenter repeated the action – taking breaks after every four presses – until the baby lost interest.


"Our findings show that when babies see others produce actions with a particular body part, their brains are activated in a corresponding way. This mapping may facilitate imitation and could play a role in the baby's ability to then produce the same actions themselves."

Joni Saby, lead author and a psychology graduate student at Temple University in Philadelphia.


One of the basics for babies to learn is how to copy what they see adults do. In other words, they must first know that it is indeed their hand and not their foot, mouth or other body part that is needed.

The new study shows that babies' brains are organized in a somatotopic way that helps crack the interpersonal code. The connection between doing and seeing actions maps hand to hand, foot to foot, all before they can name those body parts through language.


"The reason this is exciting is that it gives insight into a crucial aspect of imitation. To imitate the action of another person, babies first need to register what body part the other person used. Our findings suggest that babies do this in a particular way by mapping the actions of the other person onto their own body.

"The neural system of babies directly connects them to other people, which jump-starts imitation and social-emotional connectedness and bonding. Babies look at you and see themselves."

Peter Marshall, co-author and associate psychology professor at Temple University


The National Institutes of Health and the National Science Foundation funded the study.

Original press release:http://med.stanford.edu/ism/2013/october/liver.html