Welcome to The Visible Embryo

 

 

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

 

Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Nov 28, 2013

 

Increased exposure to maternal cortisol, may lead to poor neurodevelopmental outcomes in babies. Many studies have shown that the fetal environment has a strong influence on offspring neurobehavioral outcomes by altering the developing brain, although the exact mechanisms by which this occurs are not completely understood.







WHO Child Growth Charts

 

 

 

Mom's mood affects newborn brain behavior

A great number of women experience depression or anxiety while pregnant, and exposure of their fetus to these maternal mood disorders may lead to long-term emotional and behavioral problems in the child.

Many studies have shown that the fetal environment has a strong influence on offspring neurobehavior outcomes by altering the developing brain, although the exact mechanisms by which this occurs are not completely understood.

Researchers from the Brown Center for the Study of Children at Risk, Women and Infants Hospital of Rhode Island, Brown University, Providence, RI, have tested the influence of maternal depression and/or anxiety during pregnancy on newborn neurobehavior. They specifically looked at epigenetic modifications of the DNA — different from changes in DNA sequence — in two genes expressed in the placenta. These genes have been previously implicated in perturbations of the HPA axis — a system controlling reactions to stress which regulates many body processes.

The study will be published in the December 2013 issue of Epigenetics.


The authors observed fetal gene expression responds to increased exposure by maternal cortisol. This may lead to poor infant neurodevelopment.

This research highlights the importance of treating maternal prenatal depression and anxiety to improve risk to newborn behavioral outcomes.


Abstract
Exposure to maternal mood disorder in utero may program infant neurobehavior via DNA methylation of the glucocorticoid receptor (NR3C1) and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2), two placental genes that have been implicated in perturbations of the hypothalamic pituitary adrenocortical (HPA) axis. We tested the relations among prenatal exposure to maternal depression or anxiety, methylation of exon 1F of NR3C1 and 11β-HSD-2, and newborn neurobehavior. Controlling for relevant covariates, infants whose mothers reported depression during pregnancy and showed greater methylation of placental NR3C1 CpG2 had poorer self-regulation, more hypotonia, and more lethargy than infants whose mothers did not report depression. On the other hand, infants whose mothers reported anxiety during pregnancy and showed greater methylation of placental 11β-HSD-2 CpG4 were more hypotonic compared with infants of mothers who did not report anxiety during pregnancy. Our results support the fetal programming hypothesis and suggest that fetal adjustments to cues from the intrauterine environment, in this case an environment that could be characterized by increased exposure to maternal cortisol, may lead to poor neurodevelopmental outcomes.

For the full paper, visit the following link: https://www.landesbioscience.com/journals/epigenetics/article/26634/