Welcome to The Visible Embryo

 

 

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

 

Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Dec 12, 2013

 

ELABELA uses a receptor previously believed to be specific to APELIN, a blood-pressure controlling hormone. This receptor called APJ or Apelin Receptor has dual functions - it first conveys signals from ELABELA and then from APELIN. Mutations in the Apelin Receptor also prevent the heart from forming.







WHO Child Growth Charts

 

 

 

New hormone essential for heart development discovered

This unusual discovery could aid cardiac repair and provide new therapies to common heart diseases and hypertension.

Scientists at A*STAR’s Institute of Medical Biology (IMB) and Institute of Molecular and Cellular Biology (IMCB) have identified a gene encoding a hormone that could potentially be used as a therapeutic molecule to treat heart diseases.


The hormone - which they have chosen to name ELABELA - is only 32 amino-acids long, making it amongst the tiniest proteins made by the human body.


The team led by Dr Bruno Reversade carried out experiments to determine ELABELA’s function, since its existence was hitherto unsuspected. Using zebrafish designed to specifically lack this hormone, they uncovered that ELABELA is indispensable for heart formation. Zebrafish embryos without this gene had rudimentary or no heart at all. Their results were published in the 5 December 2013 online issue of Developmental Cell.

Deficiencies in hormones are the cause of many diseases, such as the loss of insulin or insulin resistance, that results in diabetes, and irregularities in appetite and satiety hormones that can cause obesity.


Hormones are known to control functions such as sleep, appetite and fertility.

However, this is the first time that scientists have revealed the existence of a conserved hormone playing such an early role in embryogenesis, effectively orchestrating the development of an entire organ.


The team also found that ELABELA uses a receptor previously believed to be specific to APELIN, a blood-pressure controlling hormone. This receptor called APJ or Apelin Receptor has dual functions - it first conveys signals from ELABELA and then from APELIN. Mutations in the Apelin Receptor also prevent the heart from forming. Zebrafish bereft of the Apelin Receptor are referred to as the Grinch, in reference to the cold and heartless cartoon character created by Dr. Seuss in 1957.


ELABELA has also been found to be expressed in human embryonic stem cells, indicating that it might have other functions beyond its role in cardiovascular development.


The team’s findings hold great promise for the potential use of ELABELA as a therapeutic molecule for cardiovascular disease to be used in cardiac repair and control of hypertension. As some people might have a harmful copy of the ELABELA gene in their genetic make-up, sequencing and screening for this particular gene in the general population might also help to detect predisposition to heart anomalies before the disease progresses.

Dr Bruno Reversade: “The human genome has been sequenced for over a decade. That we can still find anonymous hormones charms me. There are a still a few more to discover…but not for long.”

Prof Birgitte Lane, Executive Director of IMB: “This discovery shows great promise for the development of targeted therapies for heart disease and blood pressure control in the future. It is an excellent example of how basic research can lead to surprising and unexpected findings that may change and refine medical practice.”

Prof Hong Wan Jin, Executive Director of IMCB: “I am very pleased with Bruno's achievement as it reflects the synergy of collaboration and joint efforts among various research institutes in Singapore.”

Abstract
Highlights
ELA is an unannotated hormone present in hESCs and during embryogenesis
ela knockout zebrafish have endoderm defects and subsequent cardiac malformation
ela null embryos phenocopy apelin receptor (aplnr) mutant fish
Ela, not Apelin, is the earliest ligand for Aplnr during cardiovascular development

Summary
We report here the discovery and characterization of a gene, ELABELA (ELA), encoding a conserved hormone of 32 amino acids. Present in human embryonic stem cells, ELA is expressed at the onset of zebrafish zygotic transcription and is ubiquitous in the naive ectodermal cells of the embryo. Using zinc-finger-nuclease-mediated gene inactivation in zebrafish, we created an allelic series of ela mutants. ela null embryos have impaired endoderm differentiation potential marked by reduced gata5 and sox17 expression. Loss of Ela causes embryos to develop with a rudimentary heart or no heart at all, surprisingly phenocopying the loss of the apelin receptor (aplnr), which we show serves as Ela's cognate G protein-coupled receptor. Our results reveal the existence of a peptide hormone, ELA, which, together with APLNR, forms an essential signaling axis for early cardiovascular development.

Authors
Serene C. Chng, Lena Ho, Jing Tian, Bruno Reversadesend emailSee Affiliations

About the Reversade Laboratory
Dr. Bruno Reversade, a human geneticist and embryologist holds a Senior Principal Investigator position at IMB and IMCB. He is the coordinating investigator on A*STAR’s strategic programme on rare genetic diseases. He is an adjunct professor of the Department of Paediatrics at the National University of Singapore. He is also a Fellow of the Branco Weiss Foundation based at ETH in Switzerland, and was the first recipient of the A*STAR Investigatorship, and the first EMBO Young Investigator based outside Europe.

For more information about Dr. Reversade’s laboratory, visit www.reversade.com.

For more information about ELABELA, visit www.elabela.com.

About the Institute of Medical Biology (IMB)
IMB is one of the Biomedical Sciences Institutes of the Agency for Science, Technology and Research (A*STAR). It was formed in 2007, with a mission to study mechanisms of human disease in order to discover new and effective therapeutic strategies for improved quality of life.

IMB has 20 research teams working in three primary focus areas - stem cells, genetic disease, and skin biology. The teams work closely with clinical collaborators as well as industry partners, to target the challenging interface between basic science and clinical medicine. IMB’s strategic research topics are targeted at translational research to understand the mechanisms of human disease so as to identify new strategies for disease amelioration, cure and eradication and to improve health and wellbeing. Since 2011, IMB has also hosted the inter-research institute Skin Biology Cluster platform, and leads major strategic funding programs in rare genetic diseases and in skin biology. In 2013 IMB became a founding institute of the Skin Research Institute of Singapore.

For more information about IMB, please visit www.imb.a-star.edu.sg.

About Institute of Molecular and Cell Biology (IMCB)
The Institute of Molecular and Cell Biology (IMCB) was established in 1987 at the National University of Singapore (NUS) before becoming an autonomous research institute (RI) of A*STAR and moving to Biopolis in 2004. IMCB strives to maintain the scientific excellence of PI-driven research and at the same time aims to promote collaborative team-based projects of medical and industrial relevance.

Funded primarily by the Biomedical Research Council (BMRC) of A*STAR, IMCB’s research activities focus on four major fields: Animal Models of Development and Disease, Cancer Genetics and Therapeutics, Cell Biology in Health and Disease, and Structural Biology and Drug Discovery.

For more information about IMCB, please visit www.imcb.a-star.edu.sg

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 20 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis as well as their vicinity. These two R&D hubs, house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

For more information, visit www.a-star.edu.sg