Welcome to The Visible Embryo

 

 

Home-- -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- -Contact
 

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than one million visitors each month.

Today, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than 1 million visitors each month. The field of early embryology has grown to include the identification of the stem cell as not only critical to organogenesis in the embryo, but equally critical to organ function and repair in the adult human. The identification and understanding of genetic malfunction, inflammatory responses, and the progression in chronic disease, begins with a grounding in primary cellular and systemic functions manifested in the study of the early embryo.

WHO International Clinical Trials Registry Platform


The World Health Organization (WHO) has created a new Web site to help researchers, doctors and
patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

 

Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
CLICK ON weeks 0 - 40 and follow along every 2 weeks of fetal development
Google Search artcles published since 2007
 
 

Home | Pregnancy Timeline | News Alerts |News Archive Dec 17, 2013

 

Arm bones of child suffering with Osteogeneis imperfecta.
Osteoblasts form new bones and increase the size of growing bones.
This process is called ossificiation.







WHO Child Growth Charts

 

 

 

Brittle-bone babies helped by fetal stem cell grafts

Osteogeneis imperfecta (OI) is a congenital bone disease that causes stunted growth and repeated, painful fracturing. Ultrasound scans can reveal fractures already in the fetus, and now an international team of researchers from Sweden, Singapore and Taiwan have treated two babies in utero by injecting bone-forming stem cells.

The longitudinal results of the treatment are published in the journal Stem Cells Translational Medicine.

The babies were treated with mesenchymal stem cells, connective tissue cells that can form and improve bone tissue. The stem cells were extracted from the livers of donors and although they were completely unmatched genetically, there was no rejection and the transplanted cells were accepted as self.


Back in 2005, a paper was published from Karolinska Institutet in Sweden describing how stem cells were given to a female fetus. The present study describes how the girl suffered a large number of fractures and developed scoliosis up to the age of eight, whereupon the researchers decided to give her a fresh stem cell graft from the same donor. For the next two years the girl suffered no new fractures and improved her growth rate. Today she takes dance lessons and participates more in PE at school.

Another unborn baby with OI, a girl from Taiwan, was also given stem cell transplantation by the Karolinska Institutet team and their colleagues from Singapore. The girl subsequently followed a normal and fracture-free growth trajectory until the age of one, when it levelled off. She was given a fresh stem cell treatment and her growth resumed. The girl started to walk and has since not suffered any new fractures. Today she is four years old.


"We believe that the stem cells have helped to relieve the disease since none of the children broke bones for a period following the grafts, and both increased their growth rate," says study leader Dr Cecilia Götherström, researcher at Karolinska Institutet's Department of Clinical Sciences, Intervention and Technology. "Today, the children are doing much better than if the transplantations had not been given. OI is a very rare disease and lacks effective treatment, and a combined international effort is needed to examine whether stem cell grafts can alleviate the disease."

The researchers have also identified a patient, a boy from Canada, who was born with OI caused by exactly the same mutation as the Swedish girl had. The boy was not given stem cell therapy and was born with severe and widespread bone damage, including numerous fractures and kyphosis of the thoracic vertebrae, which causes such over-curvature of the spine that it impairs breathing. The boy died of pneumonia within his first 5 months.

Abstract
Osteogenesis imperfecta (OI) can be recognized prenatally with ultrasound. Transplantation of mesenchymal stem cells (MSCs) has the potential to ameliorate skeletal damage. We report the clinical course of two patients with OI who received prenatal human fetal MSC (hfMSC) transplantation and postnatal boosting with same-donor MSCs. We have previously reported on prenatal transplantation for OI type III. This patient was retransplanted with 2.8 × 106 same-donor MSCs per kilogram at 8 years of age, resulting in low-level engraftment in bone and improved linear growth, mobility, and fracture incidence. An infant with an identical mutation who did not receive MSC therapy succumbed at 5 months despite postnatal bisphosphonate therapy. A second fetus with OI type IV was also transplanted with 30 × 106 hfMSCs per kilogram at 31 weeks of gestation and did not suffer any new fractures for the remainder of the pregnancy or during infancy. The patient followed her normal growth velocity until 13 months of age, at which time longitudinal length plateaued. A postnatal infusion of 10 × 106 MSCs per kilogram from the same donor was performed at 19 months of age, resulting in resumption of her growth trajectory. Neither patient demonstrated alloreactivity toward the donor hfMSCs or manifested any evidence of toxicities after transplantation. Our findings suggest that prenatal transplantation of allogeneic hfMSCs in OI appears safe and is of likely clinical benefit and that retransplantation with same-donor cells is feasible. However, the limited experience to date means that it is not possible to be conclusive and that further studies are required.

Authors
Cecilia Götherström, Magnus Westgren, S W Steven Shaw, Eva Åström, Arijit Biswas, Peter H Byers, Citra N Z Mattar, Gail E Graham, Jahan Taslimi, Uwe Ewald, Nicholas M Fisk, Allen E J Yeoh, Ju-Li Lin, Po-Jen Cheng, Mahesh Choolani, Katarina Le Blanc och Jerry K Y Chan


Publication
Pre and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience
Stem Cells Translational Medicine, online 16 december 2013


Participating institutions in Singapore have been the National University Hospital, and the KK Women's and Children's Hospital. Collaborating partner of Taiwan was the Chang Gung Memorial Hospital in Linkou. Researchers of several universities and hospitals in Sweden, Canada and the USA also took part in the work. The study was financed with a grant from the Swedish Society for Medical Research, and two of the participating researchers received a salary from the Singaporean Ministry of Health.