Welcome to The Visible Embryo

Home- - -History-- -Bibliography- -Pregnancy Timeline- --Prescription Drugs in Pregnancy- -- Pregnancy Calculator- --Female Reproductive System- News Alerts -Contact

Welcome to The Visible Embryo, a comprehensive educational resource on human development from conception to birth.

The Visible Embryo provides visual references for changes in fetal development throughout pregnancy and can be navigated via fetal development or maternal changes.

The National Institutes of Child Health and Human Development awarded Phase I and Phase II Small Business Innovative Research Grants to develop The Visible Embryo. Initally designed to evaluate the internet as a teaching tool for first year medical students, The Visible Embryo is linked to over 600 educational institutions and is viewed by more than ' million visitors each month.


WHO International Clinical Trials Registry Platform
The World Health Organization (WHO) has created a new Web site to help researchers, doctors and patients obtain reliable information on high-quality clinical trials. Now you can go to one website and search all registers to identify clinical trial research underway around the world!



Home

History

Bibliography

Pregnancy Timeline

Prescription Drug Effects on Pregnancy

Pregnancy Calculator

Female Reproductive System

Contact The Visible Embryo

News Alerts Archive

Disclaimer: The Visible Embryo web site is provided for your general information only. The information contained on this site should not be treated as a substitute for medical, legal or other professional advice. Neither is The Visible Embryo responsible or liable for the contents of any websites of third parties which are listed on this site.
Content protected under a Creative Commons License.

No dirivative works may be made or used for commercial purposes.

Return To Top Of Page
Pregnancy Timeline by SemestersFetal liver is producing blood cellsHead may position into pelvisBrain convolutions beginFull TermWhite fat begins to be madeWhite fat begins to be madeHead may position into pelvisImmune system beginningImmune system beginningPeriod of rapid brain growthBrain convolutions beginLungs begin to produce surfactantSensory brain waves begin to activateSensory brain waves begin to activateInner Ear Bones HardenBone marrow starts making blood cellsBone marrow starts making blood cellsBrown fat surrounds lymphatic systemFetal sexual organs visibleFinger and toe prints appearFinger and toe prints appearHeartbeat can be detectedHeartbeat can be detectedBasic Brain Structure in PlaceThe Appearance of SomitesFirst Detectable Brain WavesA Four Chambered HeartBeginning Cerebral HemispheresFemale Reproductive SystemEnd of Embryonic PeriodEnd of Embryonic PeriodFirst Thin Layer of Skin AppearsThird TrimesterSecond TrimesterFirst TrimesterFertilizationDevelopmental Timeline
Click weeks 0 - 40 and follow fetal growth
Google Search artcles published since 2007
 
August 18, 2011--------News Archive

Hydrodynamics Transform Embryonic Cells Into Us
H
ydrodynamics can contribute to our understanding of how a cluster of embryonic cells can transform into an animal.

New Data on Adenine, a Crucial Building Block of Life
The five nucleic acids making up DNA are some of the few that can withstand ultraviolet light. But adenine turns out to have an extensive range of respones.


August 18, 2011--------News Archive

Pluripotent Stem Cells Developmentally Immature
Researchers have discovered that though similar, induced pluripotent stem cells are similar to embryonic stem cells, but are much more developmentally immature.

Change the Environment, Not the Child
National study finds equal benefit for children with cerebral palsy.


August 17, 2011--------News Archive

Molecular Delivery Serves Gene Therapy Cocktail
Scientists have devised a gene therapy cocktail that has the potential to treat some inherited diseases associated with "misfolded" proteins.

Children of Depressed Mothers Have a Different Brain
MRI scans show their children have an enlarged amygdala.

Discovery Likely to Spur Medicine and Human Health
Scientists have gained new insight into the relationship between two proteins that, out of balance, can prevent normal development of stem cells in the heart.


August 16, 2011--------News Archive

Study Finds New Role for Protein in Hearing
A protein involved in sound sensing in the inner ear may also play a role in transmitting sound information to the brain.

Retinoblastoma Made of Hybrid Cells
Scientists settle a century-old debate about retinoblastoma's beginnings and identify new targets for treating the childhood eye tumor.

Can Oral Care for Babies Prevent Future Cavities?
A recent study confirms the presence of bacteria associated with early childhood caries (ECC) in infant saliva.


August 15, 2011--------News Archive

Slowing the Allergic March
Researchers identify a target that could combat allergies of early childhood.

Gene Clue in the Development of Rheumatoid Arthritis
Findings will help lead to personalized therapies for common, complex illnesses characterized by abnormal immune responses.

Sight Re-Constructs Moving Objects: One by One
Our visual system groups areas of the world with similar characteristics, such as color, shape, or motion.WHO Child Growth Charts

A research team led by St. Jude Children's Research Hospital scientists has identified a potential new target for treatment of the childhood eye tumor retinoblastoma. Their work also settles a scientific debate by showing the cancer's cellular origins are as scrambled as the developmental pathways at work in the tumor.

Unlike other cancers that resemble a particular type of cell, researchers showed that retinoblastoma is a hybrid cell with elements of at least three different cell types. Investigators made the discovery using a variety of techniques to study 52 tumors donated by patients. The tumors were removed from a diverse group of patients, most treated at St. Jude and its international affiliates. The research appears in the August 16 edition of the scientific journal Cancer Cell.

Researchers also demonstrated that multiple, normally incompatible, developmental pathways are turned on simultaneously in retinoblastoma tumor cells. These pathways guide the fate of developing cells and determine what types of cells they become. This study found the tumor takes over at least one pathway to fuel its own growth, making it a promising drug development target.

The research provides additional insight into this rare tumor of the retina and is expected to advance understanding of retinoblastoma as well as aid development of more targeted therapies, said Michael Dyer, Ph.D., a member of the St. Jude Department of Developmental Neurobiology and the study's senior author. Justina McEvoy, Ph.D., and Jacqueline Flores-Otero, Ph.D., are co-first authors of the study and postdoctoral fellows in Dyer's laboratory.

Retinoblastoma is a tumor of the retina, which is the light-sensing membrane at the back of the eye. The tumor is found in about 5,000 individuals worldwide each year, mostly infants and toddlers. Although cure rates exceed 95 percent for patients whose cancer is contained in the eye, the prognosis is bleak if the tumor has spread.

For more than a century, scientists have tried to link the tumor's origins to one of the seven different types of cells that make up the retina. Although researchers have presented evidence to support various candidates, Dyer said the answer has remained elusive. Identifying where the tumor begins would likely speed efforts to develop new chemotherapy drugs. Increasingly, such agents are designed against particular molecular pathways active in cancer cells.

For this study, researchers took a comprehensive, unbiased approach to the search that included molecular, cellular and chemical analyses of tumor cells. Dyer and his colleagues reported that retinoblastoma tumors in both humans and mice include features from several different types of cells in the retina. The list includes cells called amacrine and horizontal interneurons, retinal progenitor cells and photoreceptors.

Investigators also screened individual cells from 192 retinoblastoma tumors to gauge the activity of about 20,000 human genes and nearly 19,000 mouse genes. The tumor cells came from the 52 patient in the study, mouse models of retinoblastoma and human tumors transplanted and growing in the eyes of mice. Scientists were surprised to find evidence in those cells that genes in multiple developmental pathways were functioning, including some pathways not normally expressed simultaneously.

Screening data are now available at no cost for use by other scientists here, "The finding that normal developmental programs are completely deregulated in this tumor is surprising and unexpected. It could also have therapeutic implications," Dyer said.

Researchers found retinoblastomas in both mice and humans have remarkably similar molecular profiles. Both involved very few genetic changes that distinguished normal cells from malignant cells. That result also sets the tumor apart from other cancers, which typically have a wider variety of genes switched on in tumor cells.

Scientists went on to show that blocking chemicals called monoamine neurotransmitters, which nerve cells normally use for communication, reduced growth in human retinoblastoma cells growing both in the laboratory and the eyes of mice. Dyer said the drugs used in this study, the anti-psychotic agents fluphenazine and chlorpromazine, better known as Thorazine, are unlikely to be used for treatment of retinoblastoma, but offer a starting point for future drug development.

The research also demonstrated that tumors transplanted directly from a patient into the same location in the eye of a mouse retained characteristics of the human tumor. The findings strengthen use of this approach for screening drugs for possible use against human cancers.

Other authors are Jiakun Zhang, Rachel Brennan, Cori Bradley, Fred Krafcik, Richard Smeyne and Amar Pani, all of St. Jude; Katie Nemeth, formerly of St. Jude; Carlos Rodriguez-Galindo, Dana-Farber Cancer Institute, Boston; Matthew Wilson and Dianne Johnson, both of University of Tennessee Health Science Center, Memphis; Shunbin Xiong and Guillermina Lozano, both of MD Anderson Cancer Center, Houston; Julien Sage, Stanford University Medical Center, Stanford, Calif., Ligia Fu, Hospital de Ninos, Tegucigalpa, Honduras; Lotfi Louhibi, Curie Institute, Paris; and Jeff Trimarchi, Iowa State University, Ames, Iowa.

The research was supported in part by the National Institutes of Health, the American Cancer Society, the Research to Prevent Blindness Foundation and ALSAC. Dyer is a Howard Hughes Medical Institute Early Career Scientist.

St. Jude Children's Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other catastrophic diseases. Ranked one of the best pediatric cancer hospitals in the country, St. Jude is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. St. Jude has developed research protocols that helped push overall survival rates for childhood cancer from less than 20 percent when the hospital opened to almost 80 percent today. St. Jude is the national coordinating center for the Pediatric Brain Tumor Consortium and the Childhood Cancer Survivor Study. In addition to pediatric cancer research, St. Jude is also a leader in sickle cell disease research and is a globally prominent research center for influenza.

Founded in 1962 by the late entertainer Danny Thomas, St. Jude freely shares its discoveries with scientific and medical communities around the world, publishing more research articles than any other pediatric cancer research center in the United States. St. Jude treats more than 5,700 patients each year and is the only pediatric cancer research center where families never pay for treatment not covered by insurance. St. Jude is financially supported by thousands of individual donors, organizations and corporations without which the hospital's work would not be possible. For more information, go to www.stjude.org.

Original article: http://www.stjude.org/hybrid-cells